The paper studies the structure of functors in the category of functors from finite dimensional -vector spaces to -vector spaces, where is a finite functor and is the injective functor . A detection theorem is proved for sub-functors of such functors, which is the basis of the proof that the functors are artinian of type one.
Soit la catégorie de foncteurs de la catégorie des -espaces vectoriels de dimension finie dans la catégorie des -espaces vectoriels. Nous étudions la structure du foncteur , où est un foncteur fini et désigne le foncteur injectif . Un théorème de détection de sous-foncteurs de est démontré, ce qui est la base de la démonstration que le foncteur est artinien de type un.
@article{AIF_2000__50_3_781_0,
author = {Powell, Geoffrey M. L.},
title = {The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces},
journal = {Annales de l'Institut Fourier},
pages = {781--805},
year = {2000},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {50},
number = {3},
doi = {10.5802/aif.1773},
zbl = {0958.18006},
mrnumber = {2001h:20065},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1773/}
}
TY - JOUR
AU - Powell, Geoffrey M. L.
TI - The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces
JO - Annales de l'Institut Fourier
PY - 2000
SP - 781
EP - 805
VL - 50
IS - 3
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1773/
DO - 10.5802/aif.1773
LA - en
ID - AIF_2000__50_3_781_0
ER -
%0 Journal Article
%A Powell, Geoffrey M. L.
%T The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces
%J Annales de l'Institut Fourier
%D 2000
%P 781-805
%V 50
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1773/
%R 10.5802/aif.1773
%G en
%F AIF_2000__50_3_781_0
Powell, Geoffrey M. L. The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 781-805. doi: 10.5802/aif.1773
[J] , The representation theory of the symmetric groups, Lecture Notes in Math., 682 (1978). | Zbl | MR
[J2] , The decomposition of tensors over finite fields of prime characteristic, Math. Zeit., 172 (1980), 161-178. | Zbl | MR | EuDML
[JK] , , The Representation Theory of the Symmetric Groups, Ency. Math. Appl., Addison-Wesley, Vol. 16, 1981. | Zbl | MR
[K1] , Generic representations of the finite general linear groups and the Steenrod algebra : I, Amer. J. Math., 116 (1993), 327-360. | Zbl | MR
[K2] , Generic representations of the finite general linear groups and the Steenrod algebra : II, K-Theory, 8 (1994), 395-426. | Zbl | MR
[K3] , Generic representations of the finite general linear groups and the Steenrod algebra : III, K-Theory, 9 (1995), 273-303. | Zbl | MR
[PS] , , Extensions de foncteurs simples, K-theory, 15 (1998), 269-291. | Zbl | MR
[P1] , with an Appendix by L. SCHWARTZ, The Artinian conjecture for I ⊗ I, J. Pure Appl. Alg., 128 (1998), 291-310. | Zbl
[P2] , Polynomial filtrations and Lannes' T-functor, K-Theory, 13 (1998), 279-304. | Zbl | MR
[P3] , The structure of Ī⊗Λn in generic representation theory, J. Alg., 194 (1997), 455-466. | Zbl | MR
[P4] , The structure of the indecomposable injectives in generic representation theory, Trans. Amer. Math. Soc., 350 (1998), 4167-4193. | Zbl | MR
[P5] , On artinian objects in the category of functors between ℙ2-vector spaces, to appear in Proceedings of Euroconference 'Infinite Length Modules', Bielefeld, 1998. | Zbl
Cité par Sources :



