The paper studies the structure of functors in the category of functors from finite dimensional -vector spaces to -vector spaces, where is a finite functor and is the injective functor . A detection theorem is proved for sub-functors of such functors, which is the basis of the proof that the functors are artinian of type one.
Soit la catégorie de foncteurs de la catégorie des -espaces vectoriels de dimension finie dans la catégorie des -espaces vectoriels. Nous étudions la structure du foncteur , où est un foncteur fini et désigne le foncteur injectif . Un théorème de détection de sous-foncteurs de est démontré, ce qui est la base de la démonstration que le foncteur est artinien de type un.
@article{AIF_2000__50_3_781_0, author = {Powell, Geoffrey M. L.}, title = {The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces}, journal = {Annales de l'Institut Fourier}, pages = {781--805}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1773}, zbl = {0958.18006}, mrnumber = {2001h:20065}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1773/} }
TY - JOUR AU - Powell, Geoffrey M. L. TI - The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces JO - Annales de l'Institut Fourier PY - 2000 SP - 781 EP - 805 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1773/ DO - 10.5802/aif.1773 LA - en ID - AIF_2000__50_3_781_0 ER -
%0 Journal Article %A Powell, Geoffrey M. L. %T The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces %J Annales de l'Institut Fourier %D 2000 %P 781-805 %V 50 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1773/ %R 10.5802/aif.1773 %G en %F AIF_2000__50_3_781_0
Powell, Geoffrey M. L. The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces. Annales de l'Institut Fourier, Volume 50 (2000) no. 3, pp. 781-805. doi : 10.5802/aif.1773. https://aif.centre-mersenne.org/articles/10.5802/aif.1773/
[J] The representation theory of the symmetric groups, Lecture Notes in Math., 682 (1978). | MR | Zbl
,[J2] The decomposition of tensors over finite fields of prime characteristic, Math. Zeit., 172 (1980), 161-178. | EuDML | MR | Zbl
,[JK] The Representation Theory of the Symmetric Groups, Ency. Math. Appl., Addison-Wesley, Vol. 16, 1981. | MR | Zbl
, ,[K1] Generic representations of the finite general linear groups and the Steenrod algebra : I, Amer. J. Math., 116 (1993), 327-360. | MR | Zbl
,[K2] Generic representations of the finite general linear groups and the Steenrod algebra : II, K-Theory, 8 (1994), 395-426. | MR | Zbl
,[K3] Generic representations of the finite general linear groups and the Steenrod algebra : III, K-Theory, 9 (1995), 273-303. | MR | Zbl
,[PS] Extensions de foncteurs simples, K-theory, 15 (1998), 269-291. | MR | Zbl
, ,[P1] The Artinian conjecture for I ⊗ I, J. Pure Appl. Alg., 128 (1998), 291-310. | Zbl
, with an Appendix by L. SCHWARTZ,[P2] Polynomial filtrations and Lannes' T-functor, K-Theory, 13 (1998), 279-304. | MR | Zbl
,[P3] The structure of Ī⊗Λn in generic representation theory, J. Alg., 194 (1997), 455-466. | MR | Zbl
,[P4] The structure of the indecomposable injectives in generic representation theory, Trans. Amer. Math. Soc., 350 (1998), 4167-4193. | MR | Zbl
,[P5] On artinian objects in the category of functors between ℙ2-vector spaces, to appear in Proceedings of Euroconference 'Infinite Length Modules', Bielefeld, 1998. | Zbl
,Cited by Sources: