Une surface de Hopf primaire est une surface complexe compacte dont le revêtement universel est et dont le groupe fondamental est le groupe cyclique engendré par une transformation , , pour tels que et . Les surfaces de Hopf primaires sont difféomorphes à et n’admettent donc aucune métrique kählérienne. En revanche, il est bien connu qu’elles admettent des métriques localement conformément kählériennes, à forme de Lee parallèle, dans le cas où et . Nous construisons ici une métrique localement conformément kählérienne, à forme de Lee parallèle, sur toute surface de Hopf primaire de la classe (). Nous montrons aussi que ces métriques sont obtenues, via une suspension riemannienne au-dessus de , en déformant la structure sasakienne canonique de par une forme quadratique hermitienne de . Finalement, nous déduisons l’existence de métriques localement conformément kählériennes sur toute surface de Hopf primaire à l’aide d’un argument de déformation dû à C. LeBrun.
A primary Hopf surface is a compact complex surface with universal cover and cyclic fundamental group generated by the transformation , , and such that and . Being diffeomorphic with Hopf surfaces cannot admit any Kähler metric. However, it was known that for and they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class (). We also show that these metrics are obtained via a Riemannian suspension over , by deforming the canonical Sasakian structure of by a Hermitian quadratic form of . We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.
@article{AIF_1998__48_4_1107_0, author = {Gauduchon, Paul and Ornea, Liviu}, title = {Locally conformally {K\"ahler} metrics on {Hopf} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {1107--1127}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {4}, year = {1998}, doi = {10.5802/aif.1651}, zbl = {0917.53025}, mrnumber = {2000g:53088}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1651/} }
TY - JOUR AU - Gauduchon, Paul AU - Ornea, Liviu TI - Locally conformally Kähler metrics on Hopf surfaces JO - Annales de l'Institut Fourier PY - 1998 SP - 1107 EP - 1127 VL - 48 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1651/ DO - 10.5802/aif.1651 LA - en ID - AIF_1998__48_4_1107_0 ER -
%0 Journal Article %A Gauduchon, Paul %A Ornea, Liviu %T Locally conformally Kähler metrics on Hopf surfaces %J Annales de l'Institut Fourier %D 1998 %P 1107-1127 %V 48 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1651/ %R 10.5802/aif.1651 %G en %F AIF_1998__48_4_1107_0
Gauduchon, Paul; Ornea, Liviu. Locally conformally Kähler metrics on Hopf surfaces. Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 1107-1127. doi : 10.5802/aif.1651. https://aif.centre-mersenne.org/articles/10.5802/aif.1651/
[1] The Riemannian Goldberg-Sachs Theorem, Int. J. Math., 8 (1997), 421-439. | MR | Zbl
, ,[2] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band, 4, Springer-Verlag, 1984. | Zbl
, , ,[3] Complex surfaces admitting no metric with parallel Lee form, preprint.
,[4] Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976. | MR | Zbl
,[5] Examples of four dimensional locally conformal Kähler manifolds, Geometriae Dedicata, 29 (1989), 227-233. | MR | Zbl
, , , ,[6] Compact locally conformal Kähler nilmanifolds, Geometriae Dedicata, 21 (1986), 187-192. | MR | Zbl
, , ,[7] Locally conformal Kähler geometry, Progress in Math., 155, Birkhäuser (1998). | MR | Zbl
, ,[8] La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. | MR | Zbl
,[9] Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. Reine Angew. Math., 469 (1995), 1-50. | MR | Zbl
,[10] Géométrie des surfaces K3: modules et périodes. Séminaire Palaiseau, octobre 1981-janvier 1982, Astérisque, 126 (1985). | Zbl
[11] An intrinsic characterisation of Kähler manifolds, Inv. Math., 74 (1983), 139-150. | Zbl
, , Jr,[12] Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963. | MR | Zbl
, ,[13] On the structure of compact complex analytic surfaces, II, American J. Math., 88 (1966), 682-722. | MR | Zbl
,[14] Complex structures on S1 ȕ S3, Proc. Nat. Acad. Sci. USA, 55 (1966), 240-243. | MR | Zbl
,[15] On deformations of complex analytic structures, III, stability theorems for complex structures, Ann. of Math., 71 (1960), 43-77. | MR | Zbl
, ,[16] Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), 528-542. | MR | Zbl
,[17] Private letter to the first named author, September 22, 1992.
,[18] A kind of even dimensional differential geometry and its application to exterior calculus, American J. Math., 65 (1943), 433-438. | MR | Zbl
,[19] Attempts of writing metrics on primary Hopf surfaces, private communication, October 1991.
,[20] Every K3 surface is Kähler, Inv. Math., 73 (1983), 139-150. | MR | Zbl
,[21] The standard CR structure on the unit tangent bundle, Tohoku Math. J., 44 (1992), 535-543. | MR | Zbl
,[22] Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politecn. Torino, 40 (1982), 81-92. | MR | Zbl
,[23] Some curvature properties of Locally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 259 (1980), 439-447. | MR | Zbl
,[24] On locally and Globally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. | MR | Zbl
,[25] Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), 231-255. | MR | Zbl
,[26] Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politecn. Torino, Vol. 45, 3 (1987), 117-123. | MR | Zbl
,Cité par Sources :