We prove that the type factor generated by the regular representation of is isomorphic to its tensor product with the hyperfinite type factor. This implies that the unitary group of is contractible with respect to the topology defined by the natural Hilbertian norm.
Nous montrons que le facteur , de type engendré par la représentation régulière de , est isomorphe à son produit tensoriel avec le facteur hyperfini de type . Cela implique que le groupe unitaire de est contractile par rapport à la topologie définie par la norme hilbertienne naturelle.
@article{AIF_1998__48_4_1093_0, author = {Jolissaint, Paul}, title = {Central sequences in the factor associated with {Thompson{\textquoteright}s} group $F$}, journal = {Annales de l'Institut Fourier}, pages = {1093--1106}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {4}, year = {1998}, doi = {10.5802/aif.1650}, zbl = {0915.46052}, mrnumber = {2000b:46108}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1650/} }
TY - JOUR AU - Jolissaint, Paul TI - Central sequences in the factor associated with Thompson’s group $F$ JO - Annales de l'Institut Fourier PY - 1998 SP - 1093 EP - 1106 VL - 48 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1650/ DO - 10.5802/aif.1650 LA - en ID - AIF_1998__48_4_1093_0 ER -
%0 Journal Article %A Jolissaint, Paul %T Central sequences in the factor associated with Thompson’s group $F$ %J Annales de l'Institut Fourier %D 1998 %P 1093-1106 %V 48 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1650/ %R 10.5802/aif.1650 %G en %F AIF_1998__48_4_1093_0
Jolissaint, Paul. Central sequences in the factor associated with Thompson’s group $F$. Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1093-1106. doi : 10.5802/aif.1650. https://aif.centre-mersenne.org/articles/10.5802/aif.1650/
[1] Deux actions de SL(2, ℤ), In Théorie ergodique, Monographie de l'E.N.S. Math., 1981. | MR | Zbl
,[2] On actions of amenable groups on II1-factors, J. Funct. Anal., 91 (1990), 404-414. | MR | Zbl
,[3] On the existence of central sequences in subfactors, Trans. Amer. Math. Soc., 321 (1990), 117-128. | MR | Zbl
,[4] Central sequences in subfactors II, Proc. Amer. Math. Soc., 121 (1994), 725-731. | MR | Zbl
,[5] Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498. | MR | Zbl
, and ,[6] Introductory notes on Richard Thompson's groups, E.N.S. Math., 42 (1996), 215-256. | MR | Zbl
, and , and ,[7] Outer conjugacy classes of automorphisms of factors, Ann. Scient. Ec. Norm. Sup., 8 (1975), 383-420. | Numdam | MR | Zbl
,[8] Classification of injective factors, Ann. of Math., 104 (1976), 73-115. | MR | Zbl
,[9] Deux nouveaux facteurs de type II1, Invent. Math., 7 (1969), 226-234. | MR | Zbl
, and ,[10] Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. | MR | Zbl
,[11] Combinatorial Group Theory and Topology, in Annals of Math. Studies 111, Princeton University Press, 1987. | Zbl
, and (eds),[12] Moyennabilité intérieure du groupe F de Thompson, C.R. Acad. Sci. Paris, Série I, 325 (1997), 61-64. | MR | Zbl
,[13] Central sequences and the hyperfinite factor, Proc. London Math. Soc., 21 (1970), 443-461. | MR | Zbl
,[14] Actions of discrete amenable groups on von Neumann algebras, Lect. Notes in Math. 1138, Springer Verlag, 1985. | MR | Zbl
,[15] The topological structure of the unitary and automorphism groups of a factor, Comm. Math. Phys., 155 (1993), 93-101. | MR | Zbl
and ,Cited by Sources: