Central sequences in the factor associated with Thompson’s group F
Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1093-1106.

We prove that the type II 1 factor L(F) generated by the regular representation of F is isomorphic to its tensor product with the hyperfinite type II 1 factor. This implies that the unitary group of L(F) is contractible with respect to the topology defined by the natural Hilbertian norm.

Nous montrons que le facteur L(F), de type II 1 engendré par la représentation régulière de F, est isomorphe à son produit tensoriel avec le facteur hyperfini de type II 1 . Cela implique que le groupe unitaire de L(F) est contractile par rapport à la topologie définie par la norme hilbertienne naturelle.

@article{AIF_1998__48_4_1093_0,
     author = {Jolissaint, Paul},
     title = {Central sequences in the factor associated with {Thompson{\textquoteright}s} group $F$},
     journal = {Annales de l'Institut Fourier},
     pages = {1093--1106},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {4},
     year = {1998},
     doi = {10.5802/aif.1650},
     zbl = {0915.46052},
     mrnumber = {2000b:46108},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1650/}
}
TY  - JOUR
AU  - Jolissaint, Paul
TI  - Central sequences in the factor associated with Thompson’s group $F$
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 1093
EP  - 1106
VL  - 48
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1650/
DO  - 10.5802/aif.1650
LA  - en
ID  - AIF_1998__48_4_1093_0
ER  - 
%0 Journal Article
%A Jolissaint, Paul
%T Central sequences in the factor associated with Thompson’s group $F$
%J Annales de l'Institut Fourier
%D 1998
%P 1093-1106
%V 48
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1650/
%R 10.5802/aif.1650
%G en
%F AIF_1998__48_4_1093_0
Jolissaint, Paul. Central sequences in the factor associated with Thompson’s group $F$. Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1093-1106. doi : 10.5802/aif.1650. https://aif.centre-mersenne.org/articles/10.5802/aif.1650/

[1] P.-L. Aubert, Deux actions de SL(2, ℤ), In Théorie ergodique, Monographie de l'E.N.S. Math., 1981. | MR | Zbl

[2] E. Bédos, On actions of amenable groups on II1-factors, J. Funct. Anal., 91 (1990), 404-414. | MR | Zbl

[3] D. Bisch, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc., 321 (1990), 117-128. | MR | Zbl

[4] D. Bisch, Central sequences in subfactors II, Proc. Amer. Math. Soc., 121 (1994), 725-731. | MR | Zbl

[5] M.G. Brin, and C.C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498. | MR | Zbl

[6] J.W. Cannon, and W.J. Floyd, and W.R. Parry, Introductory notes on Richard Thompson's groups, E.N.S. Math., 42 (1996), 215-256. | MR | Zbl

[7] A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Scient. Ec. Norm. Sup., 8 (1975), 383-420. | Numdam | MR | Zbl

[8] A. Connes, Classification of injective factors, Ann. of Math., 104 (1976), 73-115. | MR | Zbl

[9] J. Dixmier, and E.C. Lance, Deux nouveaux facteurs de type II1, Invent. Math., 7 (1969), 226-234. | MR | Zbl

[10] E.G. Effros, Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. | MR | Zbl

[11] S.M. Gersten, and J.R. Stallings (eds), Combinatorial Group Theory and Topology, in Annals of Math. Studies 111, Princeton University Press, 1987. | Zbl

[12] P. Jolissaint, Moyennabilité intérieure du groupe F de Thompson, C.R. Acad. Sci. Paris, Série I, 325 (1997), 61-64. | MR | Zbl

[13] D. Mcduff, Central sequences and the hyperfinite factor, Proc. London Math. Soc., 21 (1970), 443-461. | MR | Zbl

[14] A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lect. Notes in Math. 1138, Springer Verlag, 1985. | MR | Zbl

[15] S. Popa and M. Takesaki, The topological structure of the unitary and automorphism groups of a factor, Comm. Math. Phys., 155 (1993), 93-101. | MR | Zbl

Cited by Sources: