Pour une algèbre de Lie-Rinehart , les liens entre les structures d’algèbre de Batalin-Vilkovisky et de Gerstenhaber sur l’algèbre extérieure et de -module à droite sur ou plus généralement de connexion à droite sur sont établis ainsi que les liens correspondants en homologie. Sous l’hypothèse additionnelle que est projective de rang constant fini en tant que -module, on obtient une description de l’homologie de l’algèbre de Batalin-Vilkovisky correspondante en fonction de la cohomologie de à valeurs dans un module adapté. Des applications aux structures de Poisson et en géométrie différentielle sont abordées.
For any Lie-Rinehart algebra , B(atalin)-V(ilkovisky) algebra structures on the exterior -algebra correspond bijectively to right -module structures on ; likewise, generators for the Gerstenhaber algebra correspond bijectively to right -connections on . When is projective as an -module, given a B-V algebra structure on , the homology of the B-V algebra coincides with the homology of with coefficients in with reference to the right -module structure determined by . When is also of finite rank , there are bijective correspondences between -connections on and right -connections on and between left -module structures on and right -module structures on . Hence there are bijective correspondences between -connections on and generators for the Gerstenhaber bracket on and between -module structures on and B-V algebra structures on . The homology of such a B-V algebra coincides with the cohomology of with coefficients in , with reference to the left -module structure determined by . Some applications to Poisson structures and to differential geometry are discussed.
@article{AIF_1998__48_2_425_0, author = {Huebschmann, Johannes}, title = {Lie-Rinehart algebras, {Gerstenhaber} algebras and {Batalin-Vilkovisky} algebras}, journal = {Annales de l'Institut Fourier}, pages = {425--440}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {2}, year = {1998}, doi = {10.5802/aif.1624}, zbl = {0973.17027}, mrnumber = {99b:17021}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1624/} }
TY - JOUR AU - Huebschmann, Johannes TI - Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras JO - Annales de l'Institut Fourier PY - 1998 SP - 425 EP - 440 VL - 48 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1624/ DO - 10.5802/aif.1624 LA - en ID - AIF_1998__48_2_425_0 ER -
%0 Journal Article %A Huebschmann, Johannes %T Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras %J Annales de l'Institut Fourier %D 1998 %P 425-440 %V 48 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1624/ %R 10.5802/aif.1624 %G en %F AIF_1998__48_2_425_0
Huebschmann, Johannes. Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 425-440. doi : 10.5802/aif.1624. https://aif.centre-mersenne.org/articles/10.5802/aif.1624/
[1] Quantization of gauge theories with linearly dependent generators, Phys. Rev., D 28 (1983), 2567-2582.
and ,[2] Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B, 234 (1984), 106-124.
and ,[3] Existence theorem for gauge algebra, Jour. Math. Phys., 26 (1985), 172-184.
and ,[4] Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, preprint.
, , and ,[5] The cohomology structure of an associative ring, Ann. of Math., 78 (1963), 267-288. | MR | Zbl
,[6] Algebras, bialgebras, quantum groups and algebraic deformations, In: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff, eds. Cont. Math., AMS, Providence, 134 (1992), 51-92. | MR | Zbl
and ,[7] Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys., 195 (1994), 265-285. | MR | Zbl
,[8] Relative homological algebra, Trans. Amer. Math. Soc., 82 (1956), 246-269. | MR | Zbl
,[9] Poisson cohomology and quantization, J. für die Reine und Angew. Math., 408 (1990), 57-113. | MR | Zbl
,[10] Duality for Lie-Rinehart algebras and the modular class, preprint dg-ga/9702008, 1997. | Zbl
,[11] Differential homological algebra and homogeneous spaces J. of Pure and Applied Algebra, 5 (1974), 113-185. | MR | Zbl
, and ,[12] Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae, 41 (1995), 153-165. | MR | Zbl
,[13] Crochet de Schouten-Nijenhuiset cohomologie, in E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985) 251-271. | Zbl
,[14] New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys., 154 (1993), 613-646. | MR | Zbl
and ,[15] Differential forms for general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), 195-222. | MR | Zbl
,[16] Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt, eds., Mathematical Physics Studies, Vol. 20 Kluwer Academic Publishers, Dordrecht-Boston-London, 1997, 271-284.
,[17] The modular automorphism group of a Poisson manifold, to appear in: special volume in honor of A. Lichnerowicz, J. of Geometry and Physics. | Zbl
,[18] Gerstenhaber algebras and BV-algebras in Poisson geometry, preprint, 1997. | Zbl
,Cité par Sources :