Let be a complex algebraic group, simple and simply connected, a maximal torus and the Weyl group. One shows that the coarse moduli space parametrizing -equivalence classes of semistable -bundles over an elliptic curve is isomorphic to . By a result of Looijenga, this shows that is a weighted projective space.
Soit un groupe algébrique complexe simple et simplement connexe, un tore maximal et le groupe de Weyl. On démontre que l’espace de modules grossier paramétrant les classes de -équivalence de -fibrés semi-stables sur une courbe elliptique , est isomorphe à . D’après un résultat de Looijenga, ceci prouve que est un espace projectif anistotrope.
@article{AIF_1998__48_2_413_0, author = {Laszlo, Yves}, title = {About $G$-bundles over elliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {413--424}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {2}, year = {1998}, doi = {10.5802/aif.1623}, zbl = {0901.14019}, mrnumber = {99c:14016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1623/} }
TY - JOUR AU - Laszlo, Yves TI - About $G$-bundles over elliptic curves JO - Annales de l'Institut Fourier PY - 1998 SP - 413 EP - 424 VL - 48 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1623/ DO - 10.5802/aif.1623 LA - en ID - AIF_1998__48_2_413_0 ER -
%0 Journal Article %A Laszlo, Yves %T About $G$-bundles over elliptic curves %J Annales de l'Institut Fourier %D 1998 %P 413-424 %V 48 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1623/ %R 10.5802/aif.1623 %G en %F AIF_1998__48_2_413_0
Laszlo, Yves. About $G$-bundles over elliptic curves. Annales de l'Institut Fourier, Volume 48 (1998) no. 2, pp. 413-424. doi : 10.5802/aif.1623. https://aif.centre-mersenne.org/articles/10.5802/aif.1623/
[AB] The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond., A 308 (1982), 523-615. | MR | Zbl
, ,[Be] Conformal blocks, fusion rules and the Verlinde formula, Israel Math. Conf. Proc., 9 (1996), 75-96. | MR | Zbl
,[BS] Chevalley's theorem for complex crystallographic Coxeter groups, Funkt. Anal. i Ego Prilozheniya, 12 (1978), 79-80. | MR | Zbl
, ,[BLS] The Picard group of the moduli stack of G-bundles on a curve, preprint alg-geom/9608002, to appear in Compos. Math. | Zbl
, , ,[Bo] Groupes et algèbres de Lie, chap. 7, 8 (1990), Masson.
,[BG] Conjugacy classes in loop groups and G-bundles on elliptic curves, Int. Math. Res. Not., 15 (1966), 733-752. | MR | Zbl
,[D] Espaces projectifs anisotropes, Bull. Soc. Math. France, 103 (1975), 203-223. | Numdam | MR | Zbl
[FMW] Vector bundles and F Theory, eprint hep-th 9701162. | Zbl
, ,[Hu] Linear algebraic groups, GTM 21, Berlin, Heidelberg, New-York, Springer (1975). | MR | Zbl
,[LS] Picard group of the moduli stack of G-bundles, Ann. Scient. Éc. Norm. Sup., 4e série, 30 (1997), 499-525. | Numdam
,[LeP] Fibrés vectoriels sur les courbes algébriques, Publ. Math. Univ. Paris 7, 35 (1995). | MR | Zbl
,[Lo] Root systems and elliptic curves, Invent. Math., 38 (1976), 17-32. | MR | Zbl
,[Ra1] Moduli for principal bundles over algebraic curves, I and II, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 301-328 and 421-449. | MR | Zbl
,[Ra2] Stable principal bundles on a compact Rieman surface, Math. Ann., 213 (1975), 129-152. | MR | Zbl
,[S] Cohomologie galoisienne, LNM 5 (1964). | Zbl
,[T] Semistable bundles over an elliptic curve, Adv. Math., 98 (1993), 1-26. | MR | Zbl
,Cited by Sources: