The reciprocal of the beta function and GL(n,) Whittaker functions
Annales de l'Institut Fourier, Tome 44 (1994) no. 1, pp. 93-108.

Dans cet article nous obtenons, à l’aide du théorème de la sommation de Gauss pour les séries hypergéométriques, une expression intégrale très simple pour l’inverse de la fonction beta d’Euler. Cette expression est semblable dans sa forme à plusieurs intégrales bien connues de la fonction beta proprement dite.

Nous appliquons ensuite notre nouvelle formule aux fonctions de Whittaker pour les groupes GL(n,). Ces dernières sont des fonctions spéciales que l’on retrouve dans la théorie de Fourier appliquée aux formes automorphes du groupe linéaire général. Plus précisément, nous déduisons des représentations intégrales explicites pour les fonctions “fondamentales” de Whittaker pour les cas GL(3,) et GL(4,). Les intégrales ainsi obtenues sont très semblables aux intégrales connues des fonctions “classe-première” de Whittaker sur ces groupes. Nous croyons que cette correspondance entre les expressions des différents types de fonctions de Whittaker, pourra s’étendre aux groupes de rang arbitraire.

In this paper we derive, using the Gauss summation theorem for hypergeometric series, a simple integral expression for the reciprocal of Euler’s beta function. This expression is similar in form to several well-known integrals for the beta function itself.

We then apply our new formula to the study of GL(n,) Whittaker functions, which are special functions that arise in the Fourier theory for automorphic forms on the general linear group. Specifically, we deduce explicit integral representations of “fundamental” Whittaker functions for GL(3,) and GL(4,). The integrals obtained are seen to resemble very closely known integrals for the “class-one” Whittaker functions on these groups. It is expected that this correspondence between expressions for different types of Whittaker functions will carry over to groups of arbitrary rank.

@article{AIF_1994__44_1_93_0,
     author = {Stade, Eric},
     title = {The reciprocal of the beta function and $GL(n, {\mathbb {R}})$ {Whittaker} functions},
     journal = {Annales de l'Institut Fourier},
     pages = {93--108},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {44},
     number = {1},
     year = {1994},
     doi = {10.5802/aif.1390},
     zbl = {0801.33001},
     mrnumber = {96h:11046},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1390/}
}
TY  - JOUR
AU  - Stade, Eric
TI  - The reciprocal of the beta function and $GL(n, {\mathbb {R}})$ Whittaker functions
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 93
EP  - 108
VL  - 44
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1390/
DO  - 10.5802/aif.1390
LA  - en
ID  - AIF_1994__44_1_93_0
ER  - 
%0 Journal Article
%A Stade, Eric
%T The reciprocal of the beta function and $GL(n, {\mathbb {R}})$ Whittaker functions
%J Annales de l'Institut Fourier
%D 1994
%P 93-108
%V 44
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1390/
%R 10.5802/aif.1390
%G en
%F AIF_1994__44_1_93_0
Stade, Eric. The reciprocal of the beta function and $GL(n, {\mathbb {R}})$ Whittaker functions. Annales de l'Institut Fourier, Tome 44 (1994) no. 1, pp. 93-108. doi : 10.5802/aif.1390. https://aif.centre-mersenne.org/articles/10.5802/aif.1390/

[1] T. Bromwich, Introduction to the Theory of Infinite Series, Macmillan & Co. Ltd., 1908. | JFM

[2] D. Bump, Automorphic Forms on GL (3, R), Springer Lecture Notes in Mathematics, n°1083 (1984). | MR | Zbl

[3] D. Bump and J. Huntley, Unramified Whittaker functions for GL (3, R) to appear. | Zbl

[4] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Springer Lecture Notes in Mathematics, n°260 (1972). | MR | Zbl

[5] M. Hashizume, Whittaker functions on semisimple Lie groups, Hiroshima Math. J., 12 (1982), 259-293. | MR | Zbl

[6] H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France, 95 (1967), 243-309. | Numdam | MR | Zbl

[7] B. Kostant, On Whittaker vectors and representation theory, Inventiones Math., 48 (1978), 101-184. | MR | Zbl

[8] H. Neunhöffer, Uber die analytische Fortsetzung von Poincaréreihen, Sitz. Heidelberger Akad. Wiss., 2 (1973), 33-90. | Zbl

[9] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J., 52 (1973), 133-145. | MR | Zbl

[10] I.I. Piatetski-Shapiro, Euler subgroups, Lie Groups and their Representations, John Wiley and Sons, 1975. | MR | Zbl

[11] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (956), 47-87. | MR | Zbl

[12] J. Shalika, The multiplicity one theorem for GL(n), Annals of Math., 100 (1974), 171-193. | MR | Zbl

[13] L. Slater, Generalized Hypergeometric Functionsl Cambridge University Press, 1966. | Zbl

[14] E. Stade, Poincaré series for GL(3,R)-Whittaker functions, Duke Mathematical Journal, 58-3 (1989), pages 131-165. | MR | Zbl

[15] E. Stade, On explicit integral formulas for GL(n, R)-Whittaker functions, Duke Mathematical Journal, 60-2 (1990), 313-362. | Zbl

[16] E. Stade, GL(4, R)-Whittaker functions and 4F3(1) hypergeometric series, Trans. Amer. Math. Soc., 336-1 (1993), 253-264. | MR | Zbl

[17] N. Wallach, Asymptotic expansions of generalized matrix coefficients of representations of real reductive groups, Springer Lecture Notes in Mathematics, n°1024 (1983). | MR | Zbl

[18] E. Whittaker and G. Watson, A Course of Modern Analysis, Cambridge University Press, 1902. | JFM

Cité par Sources :