On construit des mesures singulières dont les sommes partielles de Fourier convergent vers zéro dans la métrique de -faible; on fait une analyse raffinée sur les ensembles symétriques de rapport constant.
We study the class of singular measures whose Fourier partial sums converge to 0 in the metric of the weak space; symmetric sets of constant ratio occur in an unexpected way.
@article{AIF_1982__32_1_119_0, author = {Kaufman, Robert}, title = {On the weak $L^1$ space and singular measures}, journal = {Annales de l'Institut Fourier}, pages = {119--128}, publisher = {Imprimerie Louis-Jean}, address = {Gap}, volume = {32}, number = {1}, year = {1982}, doi = {10.5802/aif.862}, zbl = {0464.42005}, mrnumber = {84i:43006}, language = {en}, url = {aif.centre-mersenne.org/item/AIF_1982__32_1_119_0/} }
Kaufman, Robert. On the weak $L^1$ space and singular measures. Annales de l'Institut Fourier, Tome 32 (1982) no. 1, pp. 119-128. doi : 10.5802/aif.862. https://aif.centre-mersenne.org/item/AIF_1982__32_1_119_0/
[1] On transformations of exceptional sets, Bull. Greek Math. Soc., 18 (1977), 176-185. | MR 81g:43011 | Zbl 0438.43007
,[2] Singular Integrals and Differentiability Properties of Functions, Princeton, 1970. | MR 44 #7280 | Zbl 0207.13501
,[3] Trigonometric Series, I, II, Cambridge, 1959 and 1968. | Zbl 0085.05601
,