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ON THE WEAK L' SPACE AND SINGULAR MEASURES

by Robert KAUFMAN

Introduction.

The class R of finite, complex measures g on (—eo, o) such
that (o) = 0, has been intensively investigated (since 1916). For
this class o(1) is trivial and for absolutely continuous measures,
we have the Riemann-Lebesgue Lemma. We investigate the correspond-
ing o(1) condition for the partial-sum operators

Sr(x, )= [ Dr(x — 1) u(dn),
Dy(H) =(mH) 'sinT¢, T>0.
The o(1) condition for S; depends on the weak L! norm, defined

by
Nullf =supYm{lul>Y};

IS (W} <Cllpll, 0<T < + o,

The weak estimate is an easy consequence of Kolmogorov’s estimate
for the Hilbert transform [2, Chapter II]. Elementary approxima-
tions show that when u = f(x)dx, then lLim [IS;(u)—fII} =0.
When p is singular and lim ||S;(u) — gll’l" = 0 for a certain mea-
surable g, two conclusions can be obtained without great difficulty
(see below):

a) [ISp(#) — Siy (WIIT —> 0 whence f(°) =0;
b) Sy(p) — 0 inmeasureas T — + oo

whence g = 0 a.e. This leads us to define:

(*) Presented at the Italian-American Conference on harmonic analysis,
Minnesota, 1981.
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W, is the class of measures p for which ||S;(n) IT — 0 as
T — + oo,

We present an elementary structural property of W,, and then
show by example that

(A) There exist M,-sets F carrying no measure u # 0 in W,.

The sets F are defined by a purely metrical property, and they
need not be especially small. Their construction is based on an idea
from the theory of divergent Fourier series [3I, Chapter VIII].

(B) The set F, of all sums Y *6™(0<6 <1/2) carries
0
ameasure A # 0 in W, provided F, isan Mg-set.

To elucidate example (B) and the next one we recall that F,
fails to be an Mgy-set (or even an M-set) unless u, € R, where p,
is the Bernoulli convolution carried by F, and that u, € R except
for certain algebraic numbers; 0 [3II, p. 147-156]. Therefore the
next example is somewhat unexpected.

(C) When 0 <8 <1/2, then p, €W, , infact
1S ()} = c(6) >0

for large T > 0. We observe in passing that u is not known
to be singular for 1/2 < 8 <1 except when u, € R, eg., for
- = (1 + 9)2.

From the weak estimate for S; it is clear that W, is norm-
closed in the space of all measures. We shall prove that when p€W,
and Yy EC'NL”, then YyuE€W,; consequently the same is true
if only Yy €L!'(n). We need two lemmas; the first was already used
implicitly.

LEMMA 1. — Let u be a measure such that S, (p) — S, (n) — 0
in measure (over finite intervals), Then (<) =0, ie., uER.

Proof — |D,(t) — Dy ()] < min(l, [¢]7!) = K(¢), say, and
KE€L?(—, ). Thus the functions |S,(u) — S;,,(n)| have a

common majorant f K(x — #) [nl(dt) in L2?. The hypothesis on
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St — Si+; then yields IS, — S, ll, — 0. This means that
fk“(jﬁ(t)P + (= D2)dt— 0 so f(w) =0, because i is
K

uniformly continuous.

LEMMA 2. — Let puER and Y EC'NL”. Thenas T—> + o
IS (x, ¥+ u) — Y(x) Sy (x, Wiy —> 0.

Proof. — Since u can be approximated in norm by measures
i, €ER, each of compact support, we can suppose that u itself
has compact support, say [#|] <a. Now S;(y.u)— ¥S;(u) con-
verges to 0 uniformly on [—a — 1, a + 1], being equal to

w1 [sin T(f — %)+ o(x , 1) n(de),

with  o(x,t) = (t —x)" ' [Y(t) — ¥(x)]; ¢(x,t) is jointly con-
tinuous. This is sufficient to obtain the uniform convergence claimed.

For |x|>a+ 1 we write
xS (x,u) =71 fsin T(t — x) - a(x, t) u(df)

with o(x, ) =x(t —x)"!; now |o|<a+1 and
0 (x,1)
— o(x,
ot

for |t| <a. Therefore xS;(u,x)—> 0 as T—> + 0, uniformly
for jx|=2a+ 1. The same applies to xS;(x, Y . pu), because
Y - pn €R, and these inequalities show that ¥S (u) — Sp(Y - u) — 0.

<a+t1l,

2. Examples.

I. Let F be a compact set in (—o,%), 0<a<1, (e,.) a
sequence decreasing to 0; for each j, let F = U F,, where
diam(F}) <e¢;, d(F} ,F]) > €, k # L.
Then F carries no probability measure u in W, (and hence no
signed measure u# 0 in W,).
We define the following property of a number B in [0,1),
relative to u and the sequence of partitions F = U F} :

(**) The total u-measure of the sets F, , such that u(Fj) > el? ,
tendsto 0, as j —> + oo,
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Plainly B8 = 0 has property (**), because u, being an element
of R, can have no discontinuities. We shall prove that if § has
property (**), and 0<B8<a«a, then y =8+ (I — «)/2 has pro-
perty (**). This leads to a contradiction as soon as vy > «, since
the number of sets F{; *Q is O(el.“").

Assuming that § has property (**), we form A = )\’. , by omitt-
ing from F, the intervals F, of u-measure > el‘.’. By Kolmogorov’s
estimate, [|ST()\].)||;"—>0, as j—> +o and T—> + oo, in-

*
dependently. Let now f denote an integral over the domain
|x — ¢t > e;."/2. Then

[Tix -t a@n = o, it g=0,
f*lx — 171N (dr) = 0(ef %) (log e)), 0 < <a.

The first of these is obvious; the second is obtained by packing
the subsets FJ, as close to x as is consistent with the condition
d(F, ,Fo) > ¢ .

For each k such that N (Fj)> €}, we let & belong to Fj
and consider the set defined by

. 1 . )
S 5 MFp) & <Ix — &l <AF)) e,
- 1

[sin€e " (x — &) > 2
where 6 = —fB+ 3a/d+ 1/4, 1=+ v + 0)/2.

The number A(F}) e’ lies between € and €*7; we
note that f+o0>«a, and v+ 0=3/4+ a/4<1. Moreover
€ "¢ = o(l), while & "A(F}) el — + oo,

For each k in question, the Lebesgue measure of S{c is
asymptotically c)\(F{c) e}’ , and the different sets are disjoint, because
A(FL) e;.’ = o(e,f"). We shall prove that IST()\I.)I > c’e]."" for a
certain ¢' >0, with T = € T — + oo, This will prove that the
total u-measure of the subsets Fj, such that e;.’ <g< el‘.3 , is o(1).

When x € S:; s

15200 = [ Drlx — M) < [Tix - e,

Fe

and the error term on the right is o(el,“’), because 0> a — f3.
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When t€F,, t—§ =o(x —§) because vy +0<1, and
sin T(t — x) = sin T(¢§, — x) + o(1) because 7<1. This easily
leads to the lower bound on |S;(x)].

Our construction is adapted from Kolmogorov’s divergent Fourier
series [31, Chapter VIII].

To complete our example, we must present a set F that is also
an M,-set. This is known for various M, -sets, but seems to oceur
explicitly in [1]: there exists a closed set E C[0,1] and a sequence
of integers N,, —> + oo such that

(1) IN x| < N;‘ (modulo 1) for x€E, k=1,
(2) The mapping y =¢e* transforms E onto an Mg -set.

Then yp(E) is covered by intervals of length < 2eN,:2 , whose dis-
tances are at least (N ' — 2N ?).

In the remaining examples it is occasionally convenient to
write S;(y) in place of S;(y, u), when u =y, .

II. We present example (C) first, because (B) is based on an
improvement in one of the inequalities used in (C). For each
n=0,1,2,3,...,F, is a union of 2"*! sets E, of diameter
207*1(1 — 9)~!, and mutual distances at least

2071 (1 — 268) (1 — 6)~! =¢, 6"*1; p(E,) = 27!,

The lower bound on the mutual distances gives a Hoélder condi-
tion on u: u(B)<c,(diam B)*, where o =—log2/logf <1.
If &, isthe center of E,, we have an identity

L fy udny =271 [ flg + 0" 1) u(dn).
Ek .

For each set E,, we define the set E; by the inequality
d(x,E)<c,0"1'/3, so the sets E; have distances at least
2¢,0™*1/3. If x €E[, then

1S (x5 1) — fEk Dy (x — #) u(dn)| <fR_Ek |x — ¢~} u(dr),

and in the last integral, [x — ¢| > 2¢,0"*!/3. Hence, by the
Holder condition, the integral is < c¢;(0")*"! = ¢;27"60". The
principal term can be evaluated by the identity above, and simplified
to the form 27 "6~ "! S pn+1 (0" 1lx — 07 ""1g).
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We observe that

tim [ Sy (x, w) f(x)dx = [ f(x) p(dx),

for suitable test functions f; for example, this is true if f and f
are integrable. Since u is singular, we can find a test function f,
such that |f]l;, <1 and lff(x) u(dx)| > 2¢; + 2¢;'. Hence

max | Dy (u)| > 2¢5 + 2¢]! forlarge T, say for T> T, .
Let T>0"'T,, and let » > 0 be chosen so that T* = §"*1 T
satisfies the inequalities T, < T* < 6~'T,. Suppose that
IDT.(O_""lx — 07" g > ey + cl‘l .

Then d(0~""'x — 0-""1¢ ,F,)<c¢,/3, since w>3, or
d(x,§, +6"1F,)<c,0"'/3, so x EE; . Hence

IDy(x, w)l > ¢y 271971 — ¢;2°"=" = ¢, 2-"g" .

But it is easy to see that the set of x's in question has measure at
least ¢,2"6", because To<T* <0~ !T,, and the functions D_.
have derivatives bounded by 6-2T.. Hence |D; WIf = cqes.

III. The example (B) requires a complicated construction, but
relies in essence on small improvements on estimates already used.
To estimate S;(u,x) we divide the range of integration into the
subsets {|x — ¢t/ <T~!'} and {|x —¢[ > T-'}. The second yields
an integral O(T'~%), by the Holder condition, and the first yields
T.O(T-%) = O(T'~%) for the same reason (and the inequality
ID;1 <T).

We give another estimate on S;(x, u) for large T, supposing
that uER.

LeEMMA 3. — To each € > 0 thereisa T, such that
ISz (x, W)l < ed(x, Fp)™*
whenever T2 T, and d =d(x,Fy) > €.
Proof. — Let 6 = d(x,F) and observe that
88 0c, w) =" [ sin T(x — £). 8. (x — 1)~* p(dr).
The function g(#) =8.(x —¢)~' is bounded by 1 on F, and
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lg(t,) —g(t,)| <& '|[t, —t,| for numbers ¢,,¢, in F,. Hence
the conclusion follows from our assumption that wE€R and the
Tietze extension theorem.

The inequality of the Lemma can be written in a more useful
way. When tE€F,, then |x —¢t|<d+2<d(l+2e'). Hence

dix,Fp)7'<(1+ 2e“)f |x — ¢t]”! u(dt). Suppose now that
x ¢ E; so that d(0~""'x —07""1§ ,Fy)=c,0""1/3. Using the
identity for integrals over E, , we find the following estimate:

If x¢#E; and T6"*! > T,,, then
| Di(x —t)u(dt)| <e |x —¢t]=! u(dt).
fE,, 2 — O u(dn) fE,, w(dt)

Consequently, when x €E; and T§"*! is sufficiently large (depend-
ingon € > 0)

ISy (x, p) — 27771077718 L (07" x — 07" )| <efne b

T8”+1(

LEMMA 4. — To each € >0 there is a 6 >0 so that, when
0-' <Y <8T'"* then Ym{|Sp(x,mw)|>Y}<e.

Proof. — We choose n=0 so that 1 <@?*lyli-«<g-1;
this leads to the inequalities 6"©~1) >Y 6 and T"*!' > &§-!. For
fixed 2, we must estimate the Lebesgue measure of the set defined
by

1
IS yne1 (K> 6=~ 1x —6-""1g)| > rh Jntlgnily

The right hand side exceeds %0"; when TO"*! is large, the

measure of the set is at most €6”*!; the total for all £ is at most
€211 < eY~!. Hence Ym{|S;(x,m)|>Y}<e.

In view of the inequality |S;(u, x)| = O(T'~%), the conclusion
of the last lemma holds when Y > 8-1T!-*, T > 1, for a certain
6§>0.

In preparation for the next lemma, we recall the identity
(n=1,2,3,...)

2"
[rwuan=2"3% [ 1 +6mucan.
k=1

We define f f®Mo,@)=2""Y f f(& + 0" f) u(dt). Then
k
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g, =g, M,where g, =0, g, is continuous on F, and takes
the values 0 and 2¥(1 < k< 2"). Using the formula for 0, we
get an identity

Sy(x,0,)=2""9"" § 607FS a0 Fx — 07" KE, ).

LEMMA 5. — To each € > 0, there is an N > 1 such that
lim sup IS (0 ) <€, if n=N.
T— 400

Proof. — In calculating liTm sup || Sy (a,,)ll’f we can omit x's
-+ 4 o0
outside (—3,3), because g, € R. In an obvious notation we write
g, = > 0, » and observe that,for T> T, .
k
ISy (o)1 < max IS¢(o, )1 + €/12.

When Y > €/6 (the others are trivial, since we suppose that |x| < 6),
m{1S;(0,)1 > 2Y} < Y, m{IS;(o, ;)| > Y}
k
= 20" m{IS . (x, p)| > 270"k Y},
k

Each summand is OR~”Y ') by Kolmogorov’s inequality; if
TO"*k > 1, then the k-th term exceeds €2~"Y only if
8(T0n+k)l—a <Y< 8—-1 (T0n+k)l —a s

by Lemma 4 and the remark after it, and this inequality occurs for
at most 2(1 — a)~!.log b/logf indices k=1,...,2". (We
assume that Y >6~!, since S;(0,) — O almost everywhere as
T—— + o0.) This proves our lemma.

A further property of o,, obtained simply by increasing #,
is the inequality |o, (I) — u(I)] < e forall intervals 1.

The next lemma establishes a property of the functional || II;"
to simplify the remaining calculations. '

LEMMA 6. — Let a; = ||f,.||’1" 1<i<N. Then
IIEf,-llf<(E al?y? .
Proof. — Let 0<¢;<1, and ¢, =1. Then

m{ZfIZYI<Em{ifi|=>,Y}<Zt'Y g,
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The minimum of the sum is Y~'(Z a}/?)*. With a little more effort,
we can obtain the bound c(1 — p)~ ! (2 ai")‘“’ ,0<p<1.

We are now in a position to construct the measure A. We shall
find probability measures A, = f, u, with f, =0, f frdp =1, such
that [|S;QAIF <k' for T>T, > T,_,... and [A (u)| < k™2
for u > T,. Lemma 5 provides A,; let us suppose that A, and T,
are known. We find o, so that g, (I) — A, (DI <k~ !(1 + T,)?
and ||Sp (o)} <k~%/25, and |G, (u)| < k™', for u > To,, > T, .
(The construction of f,,,u from f,u follows Lemma 5). We now
set Ngyy = (1 — k7 12) N, + kY20, ; by Lemma 6, we have for
T>T?

k+1
"ST()\k+1)”r1/2 < - k—1/2)1/2k—1/2 + k—2/5 .

When k =1, the last bound is 1/5, while (k +1)7! =
k = 2, we need the inequality

(1 — kY2212 4 k=25 < (K + 1)712

which can be verified with the aid of calculus. Clearly, we have
I Ners @) < (kK +1)"2 for T> Tee,; wetake Ty, = Tp,, + Too;-

. For

N —

By the construction, and integration by parts,
I @) = Ry DI < K321+ T) 2 ul;

consequently |5\k (u) — 5\k+1(u)| < k=3 unless Ju|>1+ T, .
However, if |u|>T,,, > T,, then [, (u) — A, (u)| <2k~2.
Since |A, — A, | < 2k7Y2, we have a limit ¢(u), with

lo — A | =0(k~1?).
Hence ¢ = A, with X\ carried by F, and AER.

In verifying that lLim |[S;(\)|If = 0 we can calculate the weak
norms over (—3,3). Suppose that T, |, < T < T, ; then

ISt () — St (V)| =0(k~12).
Since T=T,_;, ISt \_ I < (k—1)"'; and finally
ISt () — St _IIF =O(k=1/2).
Hence ||Sy (M)} =O(k~?) over (- 3,3).
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