Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras . Our estimates need a theorem of Hayman and Korenblum.
Récemment dans ce Journal J. Esterlé a donné une preuve nouvelle du théorème taubérien de Wiener pour en utilisant le théorème de Ahlfors-Heins pour les fonctions analytiques bornées sur un demi-plan. Ici nous utilisons essentiellement la même méthode pour certaines algèbres de Beurling . Nos évaluations ont besoin d’un théorème de Hayman et Korenblum.
@article{AIF_1981__31_4_141_0,
author = {Dales, H. G. and Hayman, W. K.},
title = {Esterl\`e's proof of the tauberian theorem for {Beurling} algebras},
journal = {Annales de l'Institut Fourier},
pages = {141--150},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {31},
number = {4},
year = {1981},
doi = {10.5802/aif.852},
zbl = {0449.40005},
mrnumber = {83j:43007},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.852/}
}
TY - JOUR AU - Dales, H. G. AU - Hayman, W. K. TI - Esterlè's proof of the tauberian theorem for Beurling algebras JO - Annales de l'Institut Fourier PY - 1981 SP - 141 EP - 150 VL - 31 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.852/ DO - 10.5802/aif.852 LA - en ID - AIF_1981__31_4_141_0 ER -
%0 Journal Article %A Dales, H. G. %A Hayman, W. K. %T Esterlè's proof of the tauberian theorem for Beurling algebras %J Annales de l'Institut Fourier %D 1981 %P 141-150 %V 31 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.852/ %R 10.5802/aif.852 %G en %F AIF_1981__31_4_141_0
Dales, H. G.; Hayman, W. K. Esterlè's proof of the tauberian theorem for Beurling algebras. Annales de l'Institut Fourier, Tome 31 (1981) no. 4, pp. 141-150. doi: 10.5802/aif.852
[1] , Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congr. Math. Scandinaves, (Helsinki, 1938), Tryekeri, Helsinki (1939), 199-210. | JFM
[2] and , The Fourier transforms of measures with compact support, Acta Math., 107 (1962), 291-309. | Zbl | MR
[3] , Jr., Entire functions, Academic Press, New York, 1954. | Zbl | MR
[4] , Translation invariant subspaces of weighted lp and Lp spaces, Math. Scand., 49 (1981), to appear. | Zbl | MR
[5] , A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier, Grenoble, 30 (1980), 91-96. | Zbl | MR | Numdam
[6] , and , Commutative normed rings, Chelsea Publishing Co., New York, 1964.
[7] , Harmonic analysis in spaces with a weight, Trudy Moskov. Mat. Obšč., 36 (1976), 21-76. = Trans. Moscow Math. Soc., 35 (1979), 21-75. | Zbl | MR
[8] and , An extension of the Riesz-Herglotz formula, Annales Academiae Scientiarum Fennicae, Series A1, Mathematica, 2 (1976), 175-201. | Zbl | MR
[9] , A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions, (Russian), Trudy Moskow. Mat. Obšč., 7 (1958), 121-148.
[10] and , Fourier transforms in the complex domain, American Math. Soc. Colloquium Publications, XIX, New York, 1934. | Zbl | JFM
[11] , Spectral analysis in weighted L1 spaces on R, Ark. Math., 11 (1973), 109-138. | Zbl | MR
Cité par Sources :



