Control systems on semi-simple Lie groups and their homogeneous spaces
Annales de l'Institut Fourier, Volume 31 (1981) no. 4, pp. 151-179.

In the present paper, we consider the class of control systems which are induced by the action of a semi-simple Lie group on a manifold, and we give a sufficient condition which insures that such a system can be steered from any initial state to any final state by an admissible control. The class of systems considered contains, in particular, essentially all the bilinear systems. Our condition is semi-algebraic but unlike the celebrated Kalman criterion for linear systems, it is not necessary. In fact, it appears that there is no semi-algebraic necessary and sufficient condition in the bilinear case and that our criterion is in some sense optimal. This will be discussed in a future paper.

Dans cette publication nous considérons la classe de systèmes à commande qui sont induits par l’action d’un groupe de Lie semi-simple sur une variété, et nous établissons un critère suffisant pour q’un tel système puisse être conduit d’un état initial arbitraire à un état final arbitraire lui aussi, par une commande admissible. La classe des systèmes considérés contient, en particulier, essentiellement tous les systèmes bilinéaires. Notre condition est semi-algébrique mais, contrairement à ce qui se passe pour le célèbre critère de Kalman pour les systèmes linéaires, elles n’est pas nécessaire. Apparemment il n’existe pas de condition nécessaire et suffisante semi-algébrique dans notre cas et notre critère est en quelque sorte optimal. Ceci sera étudié dans un papier à paraître.

@article{AIF_1981__31_4_151_0,
     author = {Jurdjevic, Velimir and Kupka, Ivan},
     title = {Control systems on semi-simple {Lie} groups and their homogeneous spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {151--179},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {31},
     number = {4},
     year = {1981},
     doi = {10.5802/aif.853},
     zbl = {0453.93011},
     mrnumber = {84a:93014},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.853/}
}
TY  - JOUR
TI  - Control systems on semi-simple Lie groups and their homogeneous spaces
JO  - Annales de l'Institut Fourier
PY  - 1981
DA  - 1981///
SP  - 151
EP  - 179
VL  - 31
IS  - 4
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.853/
UR  - https://zbmath.org/?q=an%3A0453.93011
UR  - https://www.ams.org/mathscinet-getitem?mr=84a:93014
UR  - https://doi.org/10.5802/aif.853
DO  - 10.5802/aif.853
LA  - en
ID  - AIF_1981__31_4_151_0
ER  - 
%0 Journal Article
%T Control systems on semi-simple Lie groups and their homogeneous spaces
%J Annales de l'Institut Fourier
%D 1981
%P 151-179
%V 31
%N 4
%I Imprimerie Durand
%C 28 - Luisant
%U https://doi.org/10.5802/aif.853
%R 10.5802/aif.853
%G en
%F AIF_1981__31_4_151_0
Jurdjevic, Velimir; Kupka, Ivan. Control systems on semi-simple Lie groups and their homogeneous spaces. Annales de l'Institut Fourier, Volume 31 (1981) no. 4, pp. 151-179. doi : 10.5802/aif.853. https://aif.centre-mersenne.org/articles/10.5802/aif.853/

[1] N. Bourbaki, Algèbre de Lie, Chap. VII-VIII, Hermann.

[2] A. Borel-G. Mostow, On semi-simple automorphisms of Lie algebras, Ann. of Math., vol. 61 (1955), 389-405. | MR: 16,897d | Zbl: 0066.02401

[3] J. Dixmier, Enveloping algebras, North-Holland. | Zbl: 0867.17001

[4] H. Freudenthal, Linear Lie groups, Academic Press. | Zbl: 0377.22001

[5] V. Jurdjevic and I. Kupka, Control systems subordinated to a group action : Accessibility, Journal of Diff. Equations, 39, 2 (1981), 186-211. | MR: 82f:93009 | Zbl: 0531.93008

[6] V. Jurdjevic and H. Sussmann, Control systems on Lie groups, Journal of Diff. Equations, (12) (1972), 313-329. | MR: 48 #9519 | Zbl: 0237.93027

[7] A. Krener, A generalization of Chow's theorem and the bang-bang theorem to non-linear control systems, SIAM J. Control, 11 (1973), 670-676. | Zbl: 0243.93009

[8] C. Lobry, Contrôlabilité des systèmes non-linéaires, SIAM Journal on Control, 8 (1970), 573-605. | MR: 42 #6860 | Zbl: 0207.15201

[9] C. Lobry, Contrôlabilité des systèmes non-linéaires, Proceedings of űOutils et modèles mathématiques pour l'automatique et l'analyse de systèmesƇ, C.N.R.S., Mai 1980, Centre Paul Langevin (CAES-CNRS), Aussois, France.

[10] B. Levitt and H. Sussmann, On controllability by means of two vector fields, SIAM Journal on Control, 13 (1975), 1271-1281. | MR: 53 #6626 | Zbl: 0313.93006

[11] G. Mostow, Lie algebras and Lie groups, Mem. Amer. Math. Soc., n° 14.

[12] H. Sussmann and V. Jurdjevic, Controllability of non-linear systems, Journal of Diff. Equations, 12 (1972), 95-116. | MR: 49 #3646 | Zbl: 0242.49040

Cited by Sources: