In the present paper, we consider the class of control systems which are induced by the action of a semi-simple Lie group on a manifold, and we give a sufficient condition which insures that such a system can be steered from any initial state to any final state by an admissible control. The class of systems considered contains, in particular, essentially all the bilinear systems. Our condition is semi-algebraic but unlike the celebrated Kalman criterion for linear systems, it is not necessary. In fact, it appears that there is no semi-algebraic necessary and sufficient condition in the bilinear case and that our criterion is in some sense optimal. This will be discussed in a future paper.
Dans cette publication nous considérons la classe de systèmes à commande qui sont induits par l’action d’un groupe de Lie semi-simple sur une variété, et nous établissons un critère suffisant pour q’un tel système puisse être conduit d’un état initial arbitraire à un état final arbitraire lui aussi, par une commande admissible. La classe des systèmes considérés contient, en particulier, essentiellement tous les systèmes bilinéaires. Notre condition est semi-algébrique mais, contrairement à ce qui se passe pour le célèbre critère de Kalman pour les systèmes linéaires, elles n’est pas nécessaire. Apparemment il n’existe pas de condition nécessaire et suffisante semi-algébrique dans notre cas et notre critère est en quelque sorte optimal. Ceci sera étudié dans un papier à paraître.
@article{AIF_1981__31_4_151_0, author = {Jurdjevic, Velimir and Kupka, Ivan}, title = {Control systems on semi-simple {Lie} groups and their homogeneous spaces}, journal = {Annales de l'Institut Fourier}, pages = {151--179}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {4}, year = {1981}, doi = {10.5802/aif.853}, zbl = {0453.93011}, mrnumber = {84a:93014}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.853/} }
TY - JOUR AU - Jurdjevic, Velimir AU - Kupka, Ivan TI - Control systems on semi-simple Lie groups and their homogeneous spaces JO - Annales de l'Institut Fourier PY - 1981 SP - 151 EP - 179 VL - 31 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.853/ DO - 10.5802/aif.853 LA - en ID - AIF_1981__31_4_151_0 ER -
%0 Journal Article %A Jurdjevic, Velimir %A Kupka, Ivan %T Control systems on semi-simple Lie groups and their homogeneous spaces %J Annales de l'Institut Fourier %D 1981 %P 151-179 %V 31 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.853/ %R 10.5802/aif.853 %G en %F AIF_1981__31_4_151_0
Jurdjevic, Velimir; Kupka, Ivan. Control systems on semi-simple Lie groups and their homogeneous spaces. Annales de l'Institut Fourier, Volume 31 (1981) no. 4, pp. 151-179. doi : 10.5802/aif.853. https://aif.centre-mersenne.org/articles/10.5802/aif.853/
[1] Algèbre de Lie, Chap. VII-VIII, Hermann.
,[2] On semi-simple automorphisms of Lie algebras, Ann. of Math., vol. 61 (1955), 389-405. | MR | Zbl
- ,[3] Enveloping algebras, North-Holland. | Zbl
,[4] Linear Lie groups, Academic Press. | Zbl
,[5] Control systems subordinated to a group action : Accessibility, Journal of Diff. Equations, 39, 2 (1981), 186-211. | MR | Zbl
and ,[6] Control systems on Lie groups, Journal of Diff. Equations, (12) (1972), 313-329. | MR | Zbl
and ,[7] A generalization of Chow's theorem and the bang-bang theorem to non-linear control systems, SIAM J. Control, 11 (1973), 670-676. | Zbl
,[8] Contrôlabilité des systèmes non-linéaires, SIAM Journal on Control, 8 (1970), 573-605. | MR | Zbl
,[9] Contrôlabilité des systèmes non-linéaires, Proceedings of űOutils et modèles mathématiques pour l'automatique et l'analyse de systèmesƇ, C.N.R.S., Mai 1980, Centre Paul Langevin (CAES-CNRS), Aussois, France.
,[10] On controllability by means of two vector fields, SIAM Journal on Control, 13 (1975), 1271-1281. | MR | Zbl
and ,[11] Lie algebras and Lie groups, Mem. Amer. Math. Soc., n° 14.
,[12] Controllability of non-linear systems, Journal of Diff. Equations, 12 (1972), 95-116. | MR | Zbl
and ,Cited by Sources: