Central limit theorems with hypotheses in terms of -entropy are proved first in where is a compact metric space and then in an arbitrary separable Banach space.
On démontre un théorème limite central, en utilisant l’-entropie, d’abord dans où est un compact métrisable, puis dans un espace de Banach séparable quelconque.
@article{AIF_1974__24_2_49_0,
author = {Dudley, R. M.},
title = {Metric entropy and the central limit theorem in $C(S)$},
journal = {Annales de l'Institut Fourier},
pages = {49--60},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {24},
number = {2},
year = {1974},
doi = {10.5802/aif.505},
zbl = {0275.60033},
mrnumber = {54 #3807},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.505/}
}
TY - JOUR AU - Dudley, R. M. TI - Metric entropy and the central limit theorem in $C(S)$ JO - Annales de l'Institut Fourier PY - 1974 SP - 49 EP - 60 VL - 24 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.505/ DO - 10.5802/aif.505 LA - en ID - AIF_1974__24_2_49_0 ER -
Dudley, R. M. Metric entropy and the central limit theorem in $C(S)$. Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 49-60. doi: 10.5802/aif.505
, On the central limit theorem for C(Ik) valued random variables (preprint, Statistics Dept., Univ. of Calif., Berkeley), 1973.
, Probability inequalities for the sum of independent random variables, Jour. Amer. Statist. Assoc., 57 (1962), 33-45. | Zbl
, Sample functions of the Gaussian process, Ann. Probability, 1 (1973), 66-103. | Zbl | MR
and , Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach, Studia Math., 15 (1955), 62-79. | Zbl | MR
, On the central limit theorem for sample continuous processes, to appear in Annals of Probability, 1974. | Zbl
, A note on the central limit theorem in C(S), (preprint), 1973.
, (1963), Probability Theory (Princeton, Van Nostrand). | Zbl | MR
and , (1969), The central limit theorem and ε-en-tropy, Lecture Notes in Math., 89, 224-231. | Zbl | MR
Cité par Sources :



