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METRIC ENTROPY
AND THE CENTRAL LIMIT THEOREM IN C(S)

by Richard M. DUDLEY

A central limit theorem will be proved in the Banach space
C(S) where S is a compact metric space. It will be assumed
that the individual random variables X^ in C(S) are inde-
pendent and identically distributed and satisfy

(1) |Xi(5) - Xi(()| ^ M((o)e(5, t) for all s, t e S,

where M is a random variable with EM^" < oo,p > 2, and e
is a metric on S for which the s-entropy H satisfies
lim sup £^(8, e, s) < oo for some a < 2p/(p + 2).

s^O
The first theorem of this type apparently was that of

Strassen (1969) for p = oo, i.e. for M bounded. The main
credit for the further extension to p < oo belongs to Evarist
Gine (1974), who treated the case p •==- 2. His method, using
truncation and Bernstein's inequality, will also be followed
below. Theorem 1 below, described in the previous paragraph,
can be considered as interpolating between Strassen's result
for p = oo and Gine's for p == 2.

If p = oo or p = 2, the condition on H can be wea-
kened to

J^H^^S,^ t ) d t < co.

For 2 < p < co, Gine (1973) has found a different and
often weaker sufficient condition, namely

H<^/^(S, e, s) = o(l/c| log s[) as e^O.

Section 2 presents some counterexamples which indicate why
hypotheses of a weaker type would not be enough.
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DEFINITIONS. — Given a compact space S, C(S) denotes
the set of all continuous real-valued functions on S,
metrized as usual by the supremum norm.

Given e > 0, let
/ N \

N(S, e, e) = inf J N : 3A^, S == I J A^, sup e(x, y) < 2e[.
( j^i ^yeAj )

H(S,^)=logN(S,^c) .
Given a C(S)-valued random variable X, EX === f means

that for any ^ e C(S)*, E f X d^ = f fdv.
If Xi, Xa, . . . , are independent C(S)-valued random

variables, we say the central limit theorem holds for the X
iff there is a Gaussian process Z on S with continuous

sample functions such that ^[n 2 (Xi + • • • + Xj) -> ^f(Z)
in C(S) as M-> oo, i.e. for every bounded (non-linear) real
continuous functional F on C(S),

EF^^X^ • • • +Xj) -^EF(Z) . -
If the X^ are identically distributed with law pi, where [L

is a Borel probability measure on C(S), then we say the
central limit theorem holds for [L iff it holds for the X,.

Since the Lipschitz condition on Xi may seem to be a
strong assumption, it should be noted that S may originally
be given with some other metric d. Then, since S is compact
and Xi e C(S), there are some numbers 8^ ^ 0 fast enough
so that

Pr {sup {|X,(61) - X^)| : d{s, t) ^ S,} ^ m-2} ^ m-\

Then there is a modulus of continuity g, i.e. a continuous,
subadditive, increasing function on [0, oo) with g(0) = 0,
such that g{^m) ^ m~2' Letting e = g o d we now have a
metric e such that 1) holds for some random variable M,
although M may not have a pth moment. Thus the hypotheses
limit the size of S as measured in terms of the modulus of
continuity of Xi.

The central limit theorem poses more difficulties in C(S)
than in some other Banach spaces. For example in L/* for
2 ^ r < GO, EXi =0 and E||XJ|2 < oo imply the central
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limit theorem (FortetandMourier [1955]). The counterexamples
given in sec. 2 below confirm the known fact that in C(S)
stronger conditions are needed.

The reader familiar with Gaussian processes may also note
that to ask whether a Gaussian process has sample functions in
L^ is usually a much deeper question for p ==== oo than for
p < oo.

Since every separable Banach space is isometric to a linear
subspace of a space C(S), our central limit theorem gives as a
corollary a general central limit theorem for separable Banach
spaces. This corollary will, however, be far from best possible
for many Banach spaces, such as L2, where metric entropy
hypotheses are not really relevant.

THEOREM 1. — Suppose (S, e) is a compact metric space and
\L is a probability measure on C(S) such that for some p > 2
there is a random variable M e ^p(y.) such that

a} IA^) — f{y)\ ^ M(/*)e(^, y) for all x, y e S and [L-almost
all / 'eC(S),

b) For all x e S, 'E^.f{x) = 0 and Ep/(a;)2 < oo, and
c) H(S, e, s) = 0^) as s ^ 0 for some a < 2p/(p + 2).
Then the central limit theorem holds for (JL.

COROLLARY. — Let Y and X be separable Banach spaces
and let T be a bounded linear transformation from Y into X.
Let Yyi be independent and identically distributed in Y with
EYi = 0 and E||Yi||^ < oo for some p > 2. Let S be the
unit ball in the dual space X*, with weak-* topology. Let e be
the usual norm metric on Y*. Suppose H(T*(S), e, s) == C^s"01)
as s ^ 0 for some a < 2p/(p + 2). Then the central limit
theorem holds in X for the variables X, == T(Y,).

In the situation of Theorem 1 and its Corollary, the central
limit theorem may fail if a > 2, no matter how large p is.
This is not too surprising, since the limiting Gaussian process
may fail to have continuous sample functions if the exponent
of entropy is greater than 2, although that is for a possibly

J-
different metric E 2 (Xi(^) — Xi(())2. I do not know whether
2p/(p +2) is a best possible bound for a if p < oo; it is if
p = oo (Strassen and Dudley [1969], section 2).
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Proof of Theorem 1. — In a) we can assume

M(n == sup {\f{x) - f{y)\le{x, y ) : x ^ y},

and we can take EJ^/y < 1 and a > 1.
Let YI, Yg, ..., be independent C(S)-valued random

variables with distribution (A. By a) and &),

W^ - fW < WfYe{x, ̂  < ̂ , y^.
Hence by c), since a < 2, the Strassen-Sudakov theorem
implies that the limiting Gaussian process Z has continuous
sample functions. It remains to show that the distributions

_JL
^{n ^ Y i + . - . + Y J ) are uniformly tight on C(S).

To do this we will truncate the Y^. Let M^ == M(Y^).
Then the M^ are independent identically distributed random
variables with a pth moment. Fix a y such that

a < I/Y < 2p/(p + 2), i.e. -J- + P-1 < T < i/a. Let
8=y-^--p-i . Let

U^=Y, if |MJ ^y^w

0 otherwise.
00

Then ^ P11 (Un ^ Y^) < oo, so it suffices to prove that
71=1

the central limit theorem holds for the U^.
We have E||UJ ^ E||YJ which is bounded uniformly in

n by a) and 6). Also

lEU^)-EU,(y)| ^ E|U,(a;)-U.(t/)| ^ E|Y^) - Y^)|
< (E^M)^(^ z/),

for all x, y e S, so that EU^(^) is a Lipschitzian function
of x. Now

1EU^)| == |EY,(^) + E(U. - YJ^)| = |E(Y, ~ UJ(^|

^ (EY^^PrdMJ > ^+(i/p))i" ^ Cn"^""^^
n J-for some constant C. Thus ^ EU^)/n2 -> 0 as n -^ oo,

j=i
uniformly in .T. Hence we can center the U^: let
X/» = U^ —- EU^. We need only prove the central limit
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theorem for the X,, which satisfy: EX, == 0, EX,(t)2 < oo
for all t e S, Mp s= sup EM^X^ < oo, and we can assume
Mp ^ 1; finally M(XJ < n^^ for all n ^ n^ (where ^
does not depend on co), so we can assume it holds for all n.

Let S, = Xi + • • • + X,. We have

(2) n"^\W - SJy)| ^ nfe{x, y) for all x, y e S.

Next we use an upper exponential bound, specifically
Bernstein's inequality (cf. Bennett [1962], and for a correction
to the proof and a similar application, Gine [1974]). We have
for any s > 0

(3) Pr |n"^|S^) - S,(()| ^ e\ ^ exp (- e2/^, t)2

+ enT-1^ ()])
for any s, t e S.

Since sup E(yl-lS^)2) < oo for any x e S, the uniform
n _j_

tightness of J?(n 2 SJ will be proved if we can establish the
following « probable equicontinuity » result: for some s^ -> 0,

(4) ^ - 1 1
sup Pr I sup \\W - S,(i/)|/n2 : e{x, y} ^ 2-mi > £,{ ^ £,.

n

Take any K such that y < K < l/a• In Proving that (2)
and (3) imply (4) for a given n, we will use (2) for e{s, t) ̂  rr^
and (3) for e{s, t) > n~^.

If we use (2) for 2-7" < n-^, we will have (4) in this case tor
e^ > 2-7" .̂ To do this for all n we need

e^ > 2-" sup {n^ : n^ ^ 2"},

for which it will suffice to take
e^ ^ 2-CT+OT(^K) = s^ -> 0 as m -> oo

since y < K.
It remains to show that (3) implies (4) for suitable e^ -^ 0

if 2-m > rfc"^ i.e. for m < K loga n. (Here logg denotes
logarithm to the base 2.)

For m == 1, 2, ..., let F^ be a finite set of minimal
cardinality such that for every x e S there is some x^ e F^
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with e(x, x^) ^ 2-w-3. We choose such an x^ for each x.
For some constant C ^ 1 we have by c) :

(5) card(FJ ^ exp (02^).

For any positive integers k and n we shall choose numbers.
£fc^ > 0 such that

[K log, n]

(6) limsup S P.n-0
TO^OO ft fc=^

where

P,, = Pr {3^, y £ F, u F/^ :

e ( x , y ) ^ ^-\ n^\^x)-^{y}\ ^ ^},

and such that limp^ = 0 where ^ = sup {^:n > 2m-K}
m-^x

[K. logs Tij
and ^n= S .̂

k=m

Then to obtain (6) it will suffice to make P^ ^ e^.
If we can find such e^, then given m and yz and any

x, y with 6>(^ y) ^ 2-m > n-\ let r = [K logs n] + 1,

T,( ,̂ y) = n^lS,^) ~ S,(z/)|. Then since

^ ym) ^ 2-2—3 + 2-TO < 21-7",
r-l

we have, except on a set of probability at most S Pjn? the
inequality . j=m

Tn(^ y} < T,̂ , ̂ ) + T,(y, ̂ ) + T ,̂, z/J '

+ S [T ,̂, ̂ ,) + T,(y,, y,^)]
j=m

^ 2MT-^ + s1 3^ ^ 2.2^-^^ + 3p,.
j=m

Then we could take s^ = max (4, 2 • 2^-^)^ + 3pj and
obtain (4) as desired.

We must still find s^ to satisfy (6) and ^ -> 0. By (3)
and (5) we have

P/, ^ 4 exp (802^ - ̂ [^-k + £,,nir-i2î ]).
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Thus P;,̂  ^ c^ will follow from

802^ - sW' + e^T-iy-^ ^ log ̂  - log 4,

or from

(7) ^ > [9C2/t•a+|logs,J](4^+y-^T-l^).

(7) will follow from the three inequalities

(A) |logsJ ^ 7C2'-
(B) ein > 32C2/<a-2^4, and
(C) e^ > 32C2/ca-/^+W-l.

(B) and (C) will both be satisfied when we set, for a suffi-
ciently large constant N > 1,

(8) £,, = N max (2'^(a~2), nT-^-i)).

Then (8) also implies (A) for k large enough, since

sup |log sj ^ log N + ^(2 - a) < 702^, k large.

To evaluate the maximum in the definition (8) let
^ = 2(1 - y)/a. Then

^Li^-2)^ ^ ^ ^ Uog^n,
£/<ft ~ (nf-1^-1^ for Uoga n < k ^ r.

Hence
r-l Slogan] 1-Wa-2) r-1

^ = S ̂  ^ S N2 2 ( ) + S Nnr-i2^).
k=m fc==m /c=[^log27i]

The first sum is part of the tail of a convergent geometric
series, since a < 2, so it approaches 0 as m -> oo, uniformly
in n. The second sum is at most

N(1 + Klog^n)^-^^-1),

since o c > l . As m - > o o , 7 z > 2^ -> oo so for m large,

N(1 + K loga n)n^-1 < n3^1,

so the second sum is smaller than ^-w-^W) -^ 0 as
m -> oo since a < 1/K, and the proof is complete.
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Counterexamples.

The following examples seem to show that assumptions
on moments of the norm of Xi and of differences Xi(^) — Xi(^)
do not give good central limit theorems. The examples are
based on the same scheme as those in Strassen and Dudley
(1969), sec. 3. The idea of extending this scheme to find stronger
counter-examples was suggested by A. de Araujo (1973),
although his examples there do not go as far as the ones below.

1PROPOSITION. — For any K < -^- there is a process X(()(c»>),2t
0 <; ( ^ 1, with continuous sample functions^ |X(^)(o>)[ ^ 1
for all t and co, and E(X(^) — X(<))2 < \s — ^K for all
s, t e [0, I], such that the central limit theorem does not hold for
(independent identically distributed variables in C([0, 1]) with)
the distribution of X.

Proof. — For each n == 1, 2, ..., we shall decompose
[0, 1] into a set 1̂  of N^ equal subintervals, where

n

N^ == JJ 6/c,, ks integers. Thus each interval in I^_i is
s==l

decomposed into 6k^ equal subintervals to form 1 ,̂ where
ID-{[0,1]}.

For each n and each / == 0, . .., k^ — 1, we define a
piecewise linear continuous function g^j as follows. Let

0 if N^/3 is an integer,
g^{x) = 1 if 6. + 1 ̂  N^ < 6i + 2,

— 1 if 6i + 4 < N,^ < 6i + 5,
where

i = j + r k ^ r==0, 1, . . . , N,̂  - 1,

and let g^j be continuous and linear on those closed intervals
for which it was previously defined only at the endpoints,
namely 6i + u ^ N^ < 6i + u + 1, u == 0, 2, 3, 5.

Note that for each /, inside every interval in I^_i is an
interval in !„ on which g^j == 1 and another on which
8nj = — 1- / -

Let p^ == cn"^ where 1 < (B < 2 and c == I/ S ̂ '
I ra==l
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In Strassen and Dudley (1969) we took (B == 5/4 but here
the choice is not important. To be definite, we take (3 = 3/2.

Now we define a probability measure (JL on C([0, 1]) by
setting (i({g^}) = ( i ({— gnj}) = Pn/2/c, for each n = 1, 2, . . .
and each / == 0, . . ., k^ — 1. Let X be a random variable
with distribution p.. Then clearly |X(^)| < 1. Also for each
t, EX(t) = 0 since X is symmetric and bounded.

Now we prove that the central limit theorem never holds
for [L with the given ?„, for any k^ ^ 2.

Let n be a probability space over which independent
processes Xi, Xg, . . ., are defined, each with distribution (JL.
For <o E a let A,, - A,,((o) = {r < m: (3/) X,(co) == ± g,,}

Let ^ - S X, Let B,, = {co : (3Q /,^) ^ 0}. If
reAmn

(o e B^, then there is a / such that f^n > 1 either on all
intervals where g^ ==1 or on all those where g^' = — 1.
Thus for any ji, ..., /^ with /, = 0, 1, ..., /c, — 1,
$ === 1, .. ., n, and for any signs CT, == ± 1, there is an interval
in !„ on which (7,g^ = 1 for all s == 1, . . ., n.

-JL s _JL
Let Z^ = m 2 (Xi + • • - + XJ. Then max Z^ > m 2 J^

where J^ == ^(t^) is the number of values of n with o> e B^.
Let M^ be the number of elements of A^. Then

Pr (M^ = 0) = (1 - pj" ^ exp (- mpj < 1/e if mp, ^ 1.

This holds for n = 1, 2, ..., [(cm)273] = n^ where [a;]
denotes the greatest integer ^ x.

1
Let K^ == [n^ — mf] where -y < y < 2/3. For defini-

teness et y == 5/8. Then

Pr {M^ == 0 for at least K^ values of n < n^}

^ exp (- Kjj^ ) ^ exp (- K, + (mT + 1) log {cm)^)
V-'-^m/

< exp^-1^)^^1

\ z / ^
for m large enough.

The conditional probability of B^, given that M^ > 1
. 1and any conditions on the Xp for r ^ A^, is at least -^-

^
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Thus by comparison to binomial probabilities, the conditional
probability that at least 1/3 of mT such events occur is

^
asymptotically at least —? and

2i

liminfPr {J^ ^ m"r/3} > 1

m->x 4:

by the weak law of large numbers. Hence

HminfPr {max Z^ ^ m^/S} ^ -1-,
m-><w 4

so the distributions of the Z^ are not uniformly tight and
cannot converge.

Now we estimate mean-square differences. Given s ^ t e [0, l]y
take n such that l/N^+i < \s — <| ^ 1/N^, where No ===1.
Note that X{s) — X(() = 0 unless either s or t belongs to
some interval on which X = ± g,y ^ 0. Thus

E(X(^) - X(t))2 < ^ (2p,/c^(6NJ^ - t\y)

^ 2p^^N,2). - ̂  + 8 (J^PA)
^ 72/c/r2 + 2p^l^\s-m^+ 8 ^ p,//c,

m>n

since N^|5 — ^ ^ l//c, for m < n.
Now we want to choose the k^ to make E(X/5) — X(())2

as small as possible. Fix any b > 0 and let

/c, = [exp ((1 + b^].

Then for n large,

E(X(^) - X{t)Y < 8//c^ + 72/c,r^
+ exp (- (1 + b^Ws - (|2.

Now by summation of a finite geometric series,

N^ = ft ̂  < exp (26-i(l + b)^),y=i
so
E(X(.) - X(())2

< 24 exp (- (1 + &)»+i) + 216 exp (- 2(1 + &)»)
+ \s - t\2 exp ((2 + b) b-^1 + &)'1).
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Now again by summing a geometric series, we have for any
s > 0 and n large enough

N, = n [exp (1 + by'] ^ exp (- n + b-^i + b)^1 - 1 - &))

^ exp (fc-^i + ̂ (l - s)).
Thus for 6 ^ 1 ,

E(X(.) - X(^
^ 240 N^i-26^)2 + \s — ^N^+W+w-o
^ 240|5 — (|2W+^ + |5 — |̂(1-W(1+^

for some 8 > 0. To maximize the smaller of the two expo-
nents of \s — t\ we let s ^ 0, so that 8 ^ 0 , and let
b = 1, so we get the upper bound 241] s — t\^ for any

1K < -^-> Replacing X by X/13 we can get rid of the

constant 241 and the proof is complete.
It is known that if E{X{s) — X(())2 ^ C\s — t\1^ for

some constants C < oo and s > 0, 5, ( e [0, I], then X
has a version with continuous sample functions. (This was
first proved by Kolmogorov; see Loeve (1963), p. 519.) Since

_j_
n 2 S^ has the same second-moment structure as Xi, for all n,
it is not hard to see that if also EX(s)2 < oo for some (and
hence all) s e [0, I], then Kolmogorov's theorem works
uniformly in n to estimate the modulus of sample function
continuity and boundedness, so that the central limit theorem
must hold. This observation apparently was first made by
A. de Araujo (1973).
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