The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products
Annales de l'Institut Fourier, Volume 58 (2008) no. 7, pp. 2351-2379.

We define a BV-structure on the Hochschild cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital A -algebra with a symmetric and non-degenerate -inner product.

On définit une structure de BV sur la cohomologie de Hochschild d’une algèbre associative unitaire munie d’une forme bilinéaire symétrique non dégénérée. La structure d’algèbre de Gerstenhaber induite est celle introduite dans l’article originel de Gerstenhaber sur la cohomologie de Hochschild. On étend ce résultat au cas d’une algèbre A-infinie unitaire munie d’une forme bilinéaire symétrique A-infinie non dégénérée.

Received:
Accepted:
DOI: 10.5802/aif.2417
Classification: 16E40
Keywords: Hochschild cohomology, Batalin Vilkovisky algebra
@article{AIF_2008__58_7_2351_0,
     author = {Tradler, Thomas},
     title = {The {Batalin-Vilkovisky} {Algebra} on {Hochschild} {Cohomology} {Induced} by {Infinity} {Inner} {Products}},
     journal = {Annales de l'Institut Fourier},
     pages = {2351--2379},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {7},
     year = {2008},
     doi = {10.5802/aif.2417},
     zbl = {pre05505486},
     mrnumber = {2498354},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2417/}
}
TY  - JOUR
TI  - The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products
JO  - Annales de l'Institut Fourier
PY  - 2008
DA  - 2008///
SP  - 2351
EP  - 2379
VL  - 58
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2417/
UR  - https://zbmath.org/?q=an%3Apre05505486
UR  - https://www.ams.org/mathscinet-getitem?mr=2498354
UR  - https://doi.org/10.5802/aif.2417
DO  - 10.5802/aif.2417
LA  - en
ID  - AIF_2008__58_7_2351_0
ER  - 
%0 Journal Article
%T The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products
%J Annales de l'Institut Fourier
%D 2008
%P 2351-2379
%V 58
%N 7
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2417
%R 10.5802/aif.2417
%G en
%F AIF_2008__58_7_2351_0
Tradler, Thomas. The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products. Annales de l'Institut Fourier, Volume 58 (2008) no. 7, pp. 2351-2379. doi : 10.5802/aif.2417. https://aif.centre-mersenne.org/articles/10.5802/aif.2417/

[1] Chas, M.; Sullivan, D. String Topology (1999) (preprint GT/9911159)

[2] Cohen, R. L.; Jones, J. D. S. A Homotopy Theoretic Realization Of String Topology, Math. Ann., Tome 324 (2002), pp. 773-798 | DOI | MR | Zbl

[3] Cohen, R. L.; Jones, J. D. S.; Yan, J. The loop homology algebra of spheres and projective spaces, Progr. Math., Tome 215, Birkhäuser, Basel, 2004 | MR | Zbl

[4] Connes, A. Non-commutative differential geometry, Publ. Math. IHÉS, Tome 62 (1985), pp. 257-360 | Numdam | MR | Zbl

[5] Costello, K. Topological conformal field theories and Calabi-Yau categories, Adv. Math., Tome 210 (2007), pp. 165-214 | DOI | MR | Zbl

[6] Felix, Y.; Thomas, J.-C. Rational BV-algebra in String Topology (2007) (arXiv:0705.4194) | Numdam | MR

[7] Felix, Y.; Thomas, J.-C.; Vigue-Poirrier, M. Loop homology algebra of a closed manifold (arXiv:math/0203137v2)

[8] Gerstenhaber, M. The Cohomology Structure Of An Associative Ring, Ann. of Math., Tome 78 (1963), pp. 267-288 | DOI | MR | Zbl

[9] Getzler, E.; Jones, J. D. S. Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (Preprint hep-th/9403055)

[10] Jones, J. D. S. Cyclic homology and equivariant homology, Invent. Math., Tome 87 (1987), pp. 403-423 | DOI | MR | Zbl

[11] Kaufmann, R. M. A proof of a cyclic version of Deligne’s conjecture via cacti (2004) (arXiv:QA/0403340)

[12] Lawrence, R.; Sullivan, D. A free differential Lie algebra for the interval (2006) (arXiv:math/0610949v2)

[13] Loday, J.-L. Cyclic Homology Tome 301, Springer-Verlag, 1992 | MR | Zbl

[14] Markl, M.; Shnider, S.; Stasheff, J. Operads in Algebra, Topology and Physics Tome 96, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[15] Menichi, L. String topology for spheres (arXiv:math/0609304)

[16] Menichi, L. Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory, Tome 32 (2004), pp. 231-251 | DOI | MR | Zbl

[17] Merkulov, S. A. De Rham model for string topology, Int. Math. Res. Not., Tome 55 (2004), pp. 2955-2981 | DOI | MR | Zbl

[18] Stasheff, J. Homotopy associativity of H-spaces I, Trans. AMS, Tome 108 (1963), pp. 275-292 | DOI | MR | Zbl

[19] Stasheff, J. The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Applied Algebra, Tome 89 (1993), pp. 231-235 | DOI | MR | Zbl

[20] Tradler, T. Infinity-inner-products on A-infinity algebras (to be published in J. Homotopy and Related Structures)

[21] Tradler, T.; Zeinalian, M. On the cyclic Deligne conjecture, J. Pure Appl. Algebra, Tome 204 (2006) no. 2, pp. 280-299 | DOI | MR | Zbl

[22] Tradler, T.; Zeinalian, M. Algebraic string operations, K-Theory, Tome 38 (2007) no. 1, pp. 59-82 | DOI | MR | Zbl

[23] Tradler, T.; Zeinalian, M.; Sullivan, D. Infinity structure of Poincaré duality spaces, Algebr. Geom. Topol., Tome 7 (2007), pp. 233-260 | DOI | MR | Zbl

[24] Yang, T. A Batalin-Vilkovisky Algebra structure on the Hochschild Cohomology of Truncated Polynomials (arXiv:0707.4213)

Cited by Sources: