Le module dendriforme sur le groupe cyclique
[The dendriform module on the cyclic group]
Annales de l'Institut Fourier, Volume 58 (2008) no. 7, pp. 2333-2350.

It is known that the Dendriform operad is in fact an anticyclic operad. This refined structure defines in particular a matrix of finite order acting on the vector space spanned by planar binary trees. We compute here its characteristic polynomial and propose a compatible conjecture for the characteristic polynomial of the Coxeter transformation for the Tamari lattice, which is essentially a square root of this matrix.

La structure d’opérade anticyclique de l’opérade dendriforme donne en particulier une matrice d’ordre n agissant sur l’espace engendré par les arbres binaires plans à n feuilles. On calcule le polynôme caractéristique de cette matrice. On propose aussi une conjecture compatible pour le polynôme caractéristique de la transformation de Coxeter du poset de Tamari, qui est essentiellement une racine carrée de cette matrice.

DOI: 10.5802/aif.2416
Classification: 18D50,  05E05,  06A07
Keywords: Dendriform operad, anticyclic operad, Tamari lattice, Coxeter transformation
Chapoton, Frédéric 1

1 Université Claude Bernard Lyon 1 Institut Camille Jordan 21 avenue Claude Bernard 69622 Villeurbanne cedex (France)
@article{AIF_2008__58_7_2333_0,
     author = {Chapoton, Fr\'ed\'eric},
     title = {Le module dendriforme sur le groupe cyclique},
     journal = {Annales de l'Institut Fourier},
     pages = {2333--2350},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {7},
     year = {2008},
     doi = {10.5802/aif.2416},
     mrnumber = {2498353},
     zbl = {1163.18004},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2416/}
}
TY  - JOUR
AU  - Chapoton, Frédéric
TI  - Le module dendriforme sur le groupe cyclique
JO  - Annales de l'Institut Fourier
PY  - 2008
DA  - 2008///
SP  - 2333
EP  - 2350
VL  - 58
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2416/
UR  - https://www.ams.org/mathscinet-getitem?mr=2498353
UR  - https://zbmath.org/?q=an%3A1163.18004
UR  - https://doi.org/10.5802/aif.2416
DO  - 10.5802/aif.2416
LA  - fr
ID  - AIF_2008__58_7_2333_0
ER  - 
%0 Journal Article
%A Chapoton, Frédéric
%T Le module dendriforme sur le groupe cyclique
%J Annales de l'Institut Fourier
%D 2008
%P 2333-2350
%V 58
%N 7
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2416
%R 10.5802/aif.2416
%G fr
%F AIF_2008__58_7_2333_0
Chapoton, Frédéric. Le module dendriforme sur le groupe cyclique. Annales de l'Institut Fourier, Volume 58 (2008) no. 7, pp. 2333-2350. doi : 10.5802/aif.2416. https://aif.centre-mersenne.org/articles/10.5802/aif.2416/

[1] Aguiar, M.; Sottile, F. Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra, Volume 295 (2006) no. 2, pp. 473-511 | MR | Zbl

[2] Chapoton, F. On some anticyclic operads, Algebr. Geom. Topol., Volume 5 (2005), p. 53-69 (electronic) | DOI | MR | Zbl

[3] Chapoton, F. The anticyclic operad of moulds, Int. Math. Res. Not. IMRN (2007) no. 20, pp. Art. ID rnm078, 36 | MR

[4] Chapoton, Frédéric On the Coxeter transformations for Tamari posets, Canad. Math. Bull., Volume 50 (2007) no. 2, pp. 182-190 | DOI | MR

[5] Curtis, C. W.; Reiner, I. Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962 | MR | Zbl

[6] Hivert, F.; Novelli, J.-C.; Thibon, J.-Y. Un analogue du monoïde plaxique pour les arbres binaires de recherche, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 7, pp. 577-580 | MR | Zbl

[7] Hivert, F.; Novelli, J.-C.; Thibon, J.-Y. Sur quelques propriétés de l’algèbre des arbres binaires, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 9, pp. 565-568 | Zbl

[8] Hivert, F.; Novelli, J.-C.; Thibon, J.-Y. The algebra of binary search trees, Theoret. Comput. Sci., Volume 339 (2005) no. 1, pp. 129-165 | DOI | MR | Zbl

[9] Huang, S.; Tamari, D. Problems of associativity : A simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinatorial Theory Ser. A, Volume 13 (1972), pp. 7-13 | DOI | MR | Zbl

[10] Loday, J.-L. Dialgebras, Dialgebras and related operads (Lecture Notes in Math.), Volume 1763, Springer, Berlin, 2001, pp. 7-66 | MR | Zbl

[11] Loday, J.-L. Arithmetree, J. Algebra, Volume 258 (2002) no. 1, pp. 275-309 (Special issue in celebration of Claudio Procesi’s 60th birthday) | DOI | MR | Zbl

[12] Loday, J.-L.; Ronco, M. O. Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998) no. 2, pp. 293-309 | DOI | MR | Zbl

[13] Loday, J.-L.; Ronco, M. O. Order structure on the algebra of permutations and of planar binary trees, J. Algebraic Combin., Volume 15 (2002) no. 3, pp. 253-270 | DOI | MR | Zbl

[14] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995 (With contributions by A. Zelevinsky, Oxford Science Publications) | MR | Zbl

Cited by Sources: