We show that in the category of complex algebraic varieties, the Eilenberg–Moore spectral sequence can be endowed with a weight filtration. This implies that it degenerates if all spaces involved have pure cohomology. As application, we compute the rational cohomology of an algebraic -variety ( being a connected algebraic group) in terms of its equivariant cohomology provided that is pure. This is the case, for example, if is smooth and has only finitely many orbits. We work in the category of mixed sheaves; therefore our results apply equally to (equivariant) intersection homology.
Nous montrons que dans la catégorie des variétés algébriques complexes la suite spectrale d’Eilenberg-Moore admet une filtration par le poids, ce qui implique sa dégénérescence si la cohomologie de tous les espaces en jeu est pure. Nous illustrons notre résultat par le calcul de la cohomologie rationnelle d’une -variété algébrique ( étant un group algébrique connexe), à partir de sa cohomologie équivariante, pourvu que soit pur. Cette dernière condition est satisfaite, par exemple, si est lisse et n’a qu’un nombre fini d’orbites. Nous travaillons dans la catégorie des faisceaux mixtes ; nos résultats restent donc également valables pour l’homologie d’intersection.
Keywords: Eilenberg-Moore spectral sequence, weight filtration, equivariant cohomology, intersection cohomology, complex algebraic $G$-varieties
Mot clés : suite spectrale d'Eilenberg-Moore, filtration de poids, cohomologie équivariante, cohomologie d'intersection, variétés algébriques complexes
@article{AIF_2005__55_2_673_0, author = {Franz, Matthias and Weber, Andrzej}, title = {Weights in cohomology and the {Eilenberg-Moore} spectral sequence}, journal = {Annales de l'Institut Fourier}, pages = {673--691}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {2}, year = {2005}, doi = {10.5802/aif.2109}, zbl = {02171520}, mrnumber = {2147902}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2109/} }
TY - JOUR AU - Franz, Matthias AU - Weber, Andrzej TI - Weights in cohomology and the Eilenberg-Moore spectral sequence JO - Annales de l'Institut Fourier PY - 2005 SP - 673 EP - 691 VL - 55 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2109/ DO - 10.5802/aif.2109 LA - en ID - AIF_2005__55_2_673_0 ER -
%0 Journal Article %A Franz, Matthias %A Weber, Andrzej %T Weights in cohomology and the Eilenberg-Moore spectral sequence %J Annales de l'Institut Fourier %D 2005 %P 673-691 %V 55 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2109/ %R 10.5802/aif.2109 %G en %F AIF_2005__55_2_673_0
Franz, Matthias; Weber, Andrzej. Weights in cohomology and the Eilenberg-Moore spectral sequence. Annales de l'Institut Fourier, Volume 55 (2005) no. 2, pp. 673-691. doi : 10.5802/aif.2109. https://aif.centre-mersenne.org/articles/10.5802/aif.2109/
[1] Equivariant cohomology and the Maurer-Cartan equation (Preprint math.DG/0406350)
[2] Faisceaux Pervers (Astérisque), Volume 100 (1983), pp. 5-171 | Zbl
[3] Equivariant sheaves and functors, Lecture Notes in Mathematics, 1578, Springer-Verlag, Berlin, 1994 | MR | Zbl
[4] Cohomology of Regular Embeddings, Adv. Math., Volume 82 (1990) no. 1, pp. 1-34 | DOI | MR | Zbl
[5] Sur la cohomologie des espaces fibrés et des espaces homogènes de groupes de Lie compacts, Ann. Math., Volume 57 (1953) no. 1, pp. 115-207 | DOI | MR | Zbl
[6] Variétés sphériques (, http://www-fourier.ujf-grenoble.fr/~brion/)
[7] Vanishing of odd intersection cohomology II, Math. Ann., Volume 321 (2001), pp. 399-437 | DOI | MR | Zbl
[8] Intersection cohomology of reductive varieties (2003) (arXiv preprint math.AG/0310107)
[10] Théorie de Hodge III, Publ. Math. I.H.E.S., Volume 44 (1974), pp. 5-77 | Numdam | MR | Zbl
[11] Weights of exponential sums, intersection cohomology and Newton polyhedra, Inv. Math., Volume 109 (1991), pp. 275-294 | MR | Zbl
[12] Equivariant intersection theory, Invent. Math., Volume 131 (1998) no. 3, pp. 595-634 | DOI | MR | Zbl
[13] Homology and fibrations I. Coalgebras cotensor product and its derived functors, Comment. Math. Helv., Volume 40 (1966), pp. 199-236 | MR | Zbl
[14] On the integral cohomology of smooth toric varieties ( Preprint math.AT/0308253)
[15] Intersection homology II, Invent. Math., Volume 72 (1983), pp. 77-130 | DOI | MR | Zbl
[16] Equivariant cohomology, Koszul duality and the localization theorem, Inv. Math., Volume 131 (1998), pp. 25-83 | MR | Zbl
[17] The de Rham homotopy theory of complex algebraic varieties. I -Theory, Volume 1 (1987) no. 3, pp. 271-324 | MR | Zbl
[18] Unipotent variations of mixed Hodge structure, Invent. Math., Volume 88 (1987) no. 1, pp. 83-124 | DOI | MR | Zbl
[19] Relative homological algebra homological perturbations, equivariant de Rham theory, and Koszul duality (2003) (arXiv preprint math.DG/0401161)
[20] Koszul duality for modules over Lie algebras, Duke Math. J., Volume 112 (2002) no. 3, pp. 511-520 | DOI | MR | Zbl
[21] -homotopy theory of schemes, Publ. Math. I.H.E.S., Volume 90 (2001), pp. 45-143 | Numdam | MR | Zbl
[22] Hodge structure via filtered -modules (Astérisque), Volume 130 (1985), pp. 342-351 | Zbl
[23] Introduction to mixed Hodge modules (Astérisque), Volume 179-180 (1989), pp. 145-162 | Zbl
[24] Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J., Volume 42 (1990), pp. 127-148 | DOI | MR | Zbl
[25] On the construction of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 873-878 | DOI | MR | Zbl
[26] Lectures on the Eilenberg-Moore spectral sequence, LNM, 134, Springer, 1970 | MR | Zbl
[27] Differential algebra in its own rite, Proc. Adv. Study Inst. Alg. Top. (Aarhus 1970), Vol. III (Various Publ. Ser.), Volume 13 (1970), pp. 567-577 | Zbl
[28] The Chow ring of a classifying space. Algebraic -theory, Proceedings of an AMS-IMS-SIAM summer research conference, Seattle (WA), USA, July 13-24, 1997. (American Mathematical Society. Proc. Symp. Pure Math.), Volume 67 (1999), pp. 249-281 | Zbl
[29] Formality of equivariant intersection cohomology of algebraic varieties, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 2633-2638 | DOI | MR | Zbl
[30] Weights in the cohomology of toric varieties, Central European Journal of Mathematics, Volume 2 (2004) no. 3, pp. 478-492 | DOI | MR | Zbl
Cited by Sources: