Are rational curves determined by tangent vectors?
[Les courbes rationnelles de degré minimal sont-elles déterminées par leurs vecteurs tangents ?]
Annales de l'Institut Fourier, Tome 54 (2004) no. 1, pp. 53-79.

Soit X une variété projective, revêtue par des courbes rationnelles, par exemple une variété de Fano sur le corps des nombres complexes. Dans cet article, nous donnons des conditions suffisantes pour que tout vecteur tangent en un point général de X soit tangent à au plus une courbe rationnelle de degré minimal. Comme conséquence immédiate, nous obtenons un critère d’irréductibilité de l’espace des courbes rationnelles de degré minimal

Let X be a projective variety which is covered by rational curves, for instance a Fano manifold over the complex numbers. In this paper, we give sufficient conditions which guarantee that every tangent vector at a general point of X is contained in at most one rational curve of minimal degree. As an immediate application, we obtain irreducibility criteria for the space of minimal rational curves.

DOI : 10.5802/aif.2010
Classification : 14M99, 14J45, 14J99
Keywords: Fano manifold, rational curve of minimal degree
Mots-clés : variété de Fano, courbe rationnelle de degré minimal

Kebekus, Stefan 1 ; Kovács, Sándor J. 2

1 Universität zu Köln, Mathematisches Institut, Weyertal 86--90, 50931 Köln (Allemagne)
2 University of Washington, Department of mathematics, Box 354350, Seattle, WA 98195 (USA)
@article{AIF_2004__54_1_53_0,
     author = {Kebekus, Stefan and Kov\'acs, S\'andor J.},
     title = {Are rational curves determined by tangent vectors?},
     journal = {Annales de l'Institut Fourier},
     pages = {53--79},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {1},
     year = {2004},
     doi = {10.5802/aif.2010},
     zbl = {1067.14023},
     mrnumber = {2069121},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2010/}
}
TY  - JOUR
AU  - Kebekus, Stefan
AU  - Kovács, Sándor J.
TI  - Are rational curves determined by tangent vectors?
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 53
EP  - 79
VL  - 54
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2010/
DO  - 10.5802/aif.2010
LA  - en
ID  - AIF_2004__54_1_53_0
ER  - 
%0 Journal Article
%A Kebekus, Stefan
%A Kovács, Sándor J.
%T Are rational curves determined by tangent vectors?
%J Annales de l'Institut Fourier
%D 2004
%P 53-79
%V 54
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2010/
%R 10.5802/aif.2010
%G en
%F AIF_2004__54_1_53_0
Kebekus, Stefan; Kovács, Sándor J. Are rational curves determined by tangent vectors?. Annales de l'Institut Fourier, Tome 54 (2004) no. 1, pp. 53-79. doi : 10.5802/aif.2010. https://aif.centre-mersenne.org/articles/10.5802/aif.2010/

[BBI] L. Bădescu; M.C. Beltrametti; P. Ionescu; T. Peternell and F.O. Schreyer, eds. Almost-lines and quasi-lines on projective manifolds, Complex Analysis and Algebraic Geometry (2000), pp. 1-27 | MR | Zbl

[CMS] K. Cho; Y. Miyaoka; N.I. Shepherd-Barron Characterizations of Projective Spaces and Applications (2000) (Preprint, October-December)

[Ei] D. Eisenbud Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer, 1995 | MR | Zbl

[Ha] R. Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, 1977 | MR | Zbl

[HM] J.-M. Hwang; N. Mok Automorphism groups of the spaces of minimal rational curves on Fano manifolds of Picard number 1 Preprint (to appear) | MR | Zbl

[Hw] J.-M. Hwang Geometry of Minimial Rational Curves on Fano Manifolds, ICTP (Lecture Notes Series), Volume vol. VI (2001) | MR | Zbl

[Ke1] S. Kebekus Rationale Kurven auf projektiven Mannigfaltigkeiten (German) (2001) (Habilitationsschrift, Feb., http://www.mi.uni-koeln.de)

[Ke2] S. Kebekus Lines on Contact Manifolds II (2001) (e-print, LANL-Preprint, math.AG/0103208)

[Ke3] S. Kebekus Lines on contact manifolds, J. reine angew. Math, Volume 539 (2001), pp. 167-177 | MR | Zbl

[Ke4] S. Kebekus Families of singular rational curves, J. Alg. Geom., Volume 11 (2002), pp. 245-256 | MR | Zbl

[Ke5] S. Kebekus; I. Bauer, F. Catanese Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron, Complex Geometry, Collection of Papers dedicated to Hans Grauert (2002), pp. 147-156 | MR | Zbl

[KMM] J. Kollár; Y. Miyaoka; S. Mori Rational Connectedness and Boundedness of Fano Manifolds, J. Diff. Geom., Volume 36 (1992), pp. 765-769 | MR | Zbl

[Ko] J. Kollár Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, vol. 32, Springer, 1996 | MR | Zbl

Cité par Sources :