Sur les invariants des pinceaux de formes quintiques binaires
[On the invariants of pencils of binary quintics]
Annales de l'Institut Fourier, Volume 54 (2004) no. 1, pp. 21-51.

We describe the invariant algebra of the natural action of SL 2 on pencils of binary quintic forms.

On décrit l’algèbre des invariants de l’action naturelle du groupe SL 2 sur les pinceaux de formes quintiques binaires.

DOI: 10.5802/aif.2009
Classification: 14L24,  14L30,  14H50,  13A50,  13H10,  13D40,  15A72
Keywords: geometric invariant theory, binary quintic forms, rational quintic, space curves, Poincaré series, Gorenstein rings
Meulien, Matthias 1

1 Chennai Mathematical Institute, 92 G. N. Chetty Road, Chennai 600 017 (Inde)
@article{AIF_2004__54_1_21_0,
     author = {Meulien, Matthias},
     title = {Sur les invariants des pinceaux de formes quintiques binaires},
     journal = {Annales de l'Institut Fourier},
     pages = {21--51},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {1},
     year = {2004},
     doi = {10.5802/aif.2009},
     zbl = {1062.14060},
     mrnumber = {2069120},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2009/}
}
TY  - JOUR
AU  - Meulien, Matthias
TI  - Sur les invariants des pinceaux de formes quintiques binaires
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 21
EP  - 51
VL  - 54
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2009/
UR  - https://zbmath.org/?q=an%3A1062.14060
UR  - https://www.ams.org/mathscinet-getitem?mr=2069120
UR  - https://doi.org/10.5802/aif.2009
DO  - 10.5802/aif.2009
LA  - fr
ID  - AIF_2004__54_1_21_0
ER  - 
%0 Journal Article
%A Meulien, Matthias
%T Sur les invariants des pinceaux de formes quintiques binaires
%J Annales de l'Institut Fourier
%D 2004
%P 21-51
%V 54
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2009
%R 10.5802/aif.2009
%G fr
%F AIF_2004__54_1_21_0
Meulien, Matthias. Sur les invariants des pinceaux de formes quintiques binaires. Annales de l'Institut Fourier, Volume 54 (2004) no. 1, pp. 21-51. doi : 10.5802/aif.2009. https://aif.centre-mersenne.org/articles/10.5802/aif.2009/

[And76] G. E. Andrews The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976 | MR | Zbl

[Bou87] J.-F. Boutot Singularités rationnelles et quotients par les groupes réductifs, Invent. Math, Volume 88 (1987), pp. 65-68 | EuDML | MR | Zbl

[Bou98] N. Bourbaki Algèbre commutative, Masson, 1998

[BuE77] D. A. Buchsbaum; D. Eisenbud Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension, Amer. J. Math, Volume 99 (1977) no. 3, pp. 447-485 | MR | Zbl

[GrH94] P. Griffiths; J. Harris Principles of algebraic geometry, Wiley Classics Library, New York, 1994 | MR | Zbl

[GrY03] J. H. Grace; A. Young The algebra of invariants, Cambridge University Press, 1903 | JFM

[Kno89] F. Knop Der kanonische Modul eines Invariantenrings, J. Algebra, Volume 127 (1989) no. 1, pp. 40-54 | MR | Zbl

[Man02] L. Manivel An extension of the Cayley-Sylvester formula (2002) (prépublication) | Zbl

[Meu03] M. Meulien Sur les invariants des pinceaux de quintiques binaire (2002) (thèse)

[Moo28] T. W. Moore On the invariant combinants of two binary quintics, Amer. J., Volume 50 (1928), pp. 415-430 | JFM | MR

[Mum65] D. Mumford Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, Springer-Verlag, Berlin, 1965 | MR | Zbl

[MuU83] S. Mukai; H. Umemura Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982) (1983), pp. 490-518 | MR | Zbl

[New80] P. E. Newstead Invariants of binary cubics, Math. Proc. Camb. Phil. Soc, Volume 89 (1981), pp. 201-209 | MR | Zbl

[Pop92] V. L. Popov Groups, generators, syzygies, and orbits in invariant theory, American Mathematical Society, 1992 | MR | Zbl

[Sal90] G. Salmon Traité d'algèbre supérieure, Gauthier-Villars et Fils, Paris, 1890 | JFM

[Shi67] T. Shioda On the graded ring of invariants of binary octavics, Amer. J. Math, Volume 89 (1967), pp. 1022-1046 | MR | Zbl

[Spr80] T. Springer On the invariant theory of SU 2 , Indag. Math., Volume 42 (1980), pp. 339-345 | MR | Zbl

[Tra88] G. Trautmann Poncelet curves and associated theta characteristics, Expo. Math, Volume 6 (1988) no. 1, pp. 29-64 | MR | Zbl

[Ver88] J.-L. Verdier Applications harmoniques de S 2 dans S 4 . II., Harmonic mappings, twistors, and σ-models (Luminy, 1986) (1988), pp. 124-147 | MR | Zbl

[Wey93] J. Weyman Gordan ideals in the theory of binary forms, J. Algebra, Volume 161 (1993) no. 2, pp. 370-391 | MR | Zbl

Cited by Sources: