Let be a projective variety which is covered by rational curves, for instance a Fano manifold over the complex numbers. In this paper, we give sufficient conditions which guarantee that every tangent vector at a general point of is contained in at most one rational curve of minimal degree. As an immediate application, we obtain irreducibility criteria for the space of minimal rational curves.
Soit une variété projective, revêtue par des courbes rationnelles, par exemple une variété de Fano sur le corps des nombres complexes. Dans cet article, nous donnons des conditions suffisantes pour que tout vecteur tangent en un point général de soit tangent à au plus une courbe rationnelle de degré minimal. Comme conséquence immédiate, nous obtenons un critère d’irréductibilité de l’espace des courbes rationnelles de degré minimal
Keywords: Fano manifold, rational curve of minimal degree
Mot clés : variété de Fano, courbe rationnelle de degré minimal
Kebekus, Stefan 1; Kovács, Sándor J. 2
@article{AIF_2004__54_1_53_0, author = {Kebekus, Stefan and Kov\'acs, S\'andor J.}, title = {Are rational curves determined by tangent vectors?}, journal = {Annales de l'Institut Fourier}, pages = {53--79}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {1}, year = {2004}, doi = {10.5802/aif.2010}, zbl = {1067.14023}, mrnumber = {2069121}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2010/} }
TY - JOUR AU - Kebekus, Stefan AU - Kovács, Sándor J. TI - Are rational curves determined by tangent vectors? JO - Annales de l'Institut Fourier PY - 2004 SP - 53 EP - 79 VL - 54 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2010/ DO - 10.5802/aif.2010 LA - en ID - AIF_2004__54_1_53_0 ER -
%0 Journal Article %A Kebekus, Stefan %A Kovács, Sándor J. %T Are rational curves determined by tangent vectors? %J Annales de l'Institut Fourier %D 2004 %P 53-79 %V 54 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2010/ %R 10.5802/aif.2010 %G en %F AIF_2004__54_1_53_0
Kebekus, Stefan; Kovács, Sándor J. Are rational curves determined by tangent vectors?. Annales de l'Institut Fourier, Volume 54 (2004) no. 1, pp. 53-79. doi : 10.5802/aif.2010. https://aif.centre-mersenne.org/articles/10.5802/aif.2010/
[BBI] Almost-lines and quasi-lines on projective manifolds, Complex Analysis and Algebraic Geometry (2000), pp. 1-27 | MR | Zbl
[CMS] Characterizations of Projective Spaces and Applications (2000) (Preprint, October-December)
[Ei] Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer, 1995 | MR | Zbl
[Ha] Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, 1977 | MR | Zbl
[HM] Automorphism groups of the spaces of minimal rational curves on Fano manifolds of Picard number 1 Preprint (to appear) | MR | Zbl
[Hw] Geometry of Minimial Rational Curves on Fano Manifolds, ICTP (Lecture Notes Series), Volume vol. VI (2001) | MR | Zbl
[Ke1] Rationale Kurven auf projektiven Mannigfaltigkeiten (German) (2001) (Habilitationsschrift, Feb., http://www.mi.uni-koeln.de)
[Ke2] Lines on Contact Manifolds II (2001) (e-print, LANL-Preprint, math.AG/0103208)
[Ke3] Lines on contact manifolds, J. reine angew. Math, Volume 539 (2001), pp. 167-177 | MR | Zbl
[Ke4] Families of singular rational curves, J. Alg. Geom., Volume 11 (2002), pp. 245-256 | MR | Zbl
[Ke5] Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron, Complex Geometry, Collection of Papers dedicated to Hans Grauert (2002), pp. 147-156 | MR | Zbl
[KMM] Rational Connectedness and Boundedness of Fano Manifolds, J. Diff. Geom., Volume 36 (1992), pp. 765-769 | MR | Zbl
[Ko] Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, vol. 32, Springer, 1996 | MR | Zbl
Cited by Sources: