Let be a totally positive algebraic integer, with the difference between its trace and its degree at most 6. We describe an algorithm for finding all such , and display the resulting list of 1314 values of which the algorithm produces.
Soit un entier algébrique totalement positif, dont la différence entre la trace et le degré n’excède pas 6. On décrit un algorithme pour trouver tous les de ce type, et on donne la table des 1314 valeurs de issues de l’algorithme.
@article{AIF_1984__34_3_1_0, author = {Smyth, Chistopher J.}, title = {Totally positive algebraic integers of small trace}, journal = {Annales de l'Institut Fourier}, pages = {1--28}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, number = {3}, year = {1984}, doi = {10.5802/aif.975}, zbl = {0534.12002}, mrnumber = {86f:11091}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.975/} }
TY - JOUR AU - Smyth, Chistopher J. TI - Totally positive algebraic integers of small trace JO - Annales de l'Institut Fourier PY - 1984 SP - 1 EP - 28 VL - 34 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.975/ DO - 10.5802/aif.975 LA - en ID - AIF_1984__34_3_1_0 ER -
Smyth, Chistopher J. Totally positive algebraic integers of small trace. Annales de l'Institut Fourier, Volume 34 (1984) no. 3, pp. 1-28. doi : 10.5802/aif.975. https://aif.centre-mersenne.org/articles/10.5802/aif.975/
[1] Introduction to approximation theory, McGraw-Hill, New York, 1966. | MR | Zbl
,[2] Algebraic equations with span less than 4, Math. of Comp., 10 (1964), 549-559. | Zbl
,[3] The trace of totally positive and real algebraic integers, Ann Math., 46 (1945), 302-312. | MR | Zbl
,[4] On the measure of totally real algebraic integers II, Math. of Comp., 37 (1981), 205-208. | MR | Zbl
,[5] The mean values of totally real algebraic integers, Math. of Comp., to appear April 1984. | MR | Zbl
,Cited by Sources: