We say that an entire function has Fejér gaps if The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.
On dit qu’une fonction entière a des lacunes de Fejér si Le résultat principal de cet article est le suivant : Une fonction entière avec des lacunes de Fejér n’a pas de valeur déficiente finie.
@article{AIF_1983__33_3_39_0, author = {Murai, Takafumi}, title = {The deficiency of entire functions with {Fej\'er} gaps}, journal = {Annales de l'Institut Fourier}, pages = {39--58}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {3}, year = {1983}, doi = {10.5802/aif.930}, mrnumber = {723947}, zbl = {0489.30028}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.930/} }
TY - JOUR AU - Murai, Takafumi TI - The deficiency of entire functions with Fejér gaps JO - Annales de l'Institut Fourier PY - 1983 SP - 39 EP - 58 VL - 33 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.930/ DO - 10.5802/aif.930 LA - en ID - AIF_1983__33_3_39_0 ER -
Murai, Takafumi. The deficiency of entire functions with Fejér gaps. Annales de l'Institut Fourier, Volume 33 (1983) no. 3, pp. 39-58. doi : 10.5802/aif.930. https://aif.centre-mersenne.org/articles/10.5802/aif.930/
[1] Sur les équations algébriques contenant des paramètres arbitraires, Bull. Int. Acad. Polon. Sci. Lett., Sér. A (III) (1927), 542-685. | JFM
,[2] Sur les fonctions entières à séries lacunaires, C.R.A.S., Paris, Sér. A-B, 187 (1928), 477-479. | JFM
,[3] On integral functions with exceptional values, J. London Math. Soc., 42 (1967), 393-400. | MR | Zbl
,[4] Über die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Annalen, (1908), 413-423. | EuDML | JFM | MR
,[5] Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661-667. | MR | Zbl
,[6] Nevanlinna theory and gap series, Symposia on theoretical physics and mathematics, V.9, Plenum Press, New York, 1969. | MR | Zbl
,[7] Meromorphic functions, Oxford, 1964. | MR | Zbl
,[8] Angular value distribution of power series with gaps, Proc. London Math. Soc., (3), 24 (1972), 590-624. | MR | Zbl
,[9] On the Borel exceptional values of lacunary integral functions, J. Analyse Math., 9 (1961/1962), 71-109. | MR | Zbl
,[10] A gap-theorem for entire functions of infinite order, Michigan Math. J., 12 (1965), 133-140. | MR | Zbl
,[11] The deficiency of gap series, Analysis (1983) to appear. | Zbl
,[12] Growth of meromorphic functions of finite lower order, Izv. Akad. Nauk SSSR, Ser. Mat., 33 (1969), 414-454. | Zbl
,[13] Lücken und Singularitäten von Porenzreihen, Math. Z., 29 (1929), 549-640. | JFM
,[14] An analogue of a theorem of W.H.J. Fuchs on gap series, Proc. London Math. Soc., (3), 21 (1970), 525-539. | MR | Zbl
,[15] Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grössten Gliede der zugehörigen Taylorschen Reihe, Acta Math., 37 (1914), 305-326. | JFM
,[16] Trigonometric series I, Cambridge, 1959. | Zbl
,Cited by Sources: