The Gleason problem is solved on real analytic pseudoconvex domains in . In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are -points as studied by Range and therefore allow local sup-norm estimates for .
Le problème de Gleason est résolu dans le cas particulier des domaines analytiques réels pseudo-convexes de . Dans ce cas, les points faiblement pseudo-convexes peuvent former un sous-ensemble de dimension 2 du bord.
Le problème de Gleason est ramené à une question sur en montrant que l’ensemble des points de Kohn-Nirenberg a au plus une dimension. En fait, exception faite d’un sous-ensemble unidimensionnel, les points faiblement pseudo-convexes du bord sont des -points comme ceux étudiés par Range et admettent donc des estimations de par des normes de la borne supérieure locales.
@article{AIF_1983__33_2_77_0, author = {Fornaess, John Erik and Ovrelid, M.}, title = {Finitely generated ideals in $A(\omega )$}, journal = {Annales de l'Institut Fourier}, pages = {77--85}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {2}, year = {1983}, doi = {10.5802/aif.916}, zbl = {0489.32013}, mrnumber = {84h:32019}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.916/} }
TY - JOUR AU - Fornaess, John Erik AU - Ovrelid, M. TI - Finitely generated ideals in $A(\omega )$ JO - Annales de l'Institut Fourier PY - 1983 SP - 77 EP - 85 VL - 33 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.916/ DO - 10.5802/aif.916 LA - en ID - AIF_1983__33_2_77_0 ER -
%0 Journal Article %A Fornaess, John Erik %A Ovrelid, M. %T Finitely generated ideals in $A(\omega )$ %J Annales de l'Institut Fourier %D 1983 %P 77-85 %V 33 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.916/ %R 10.5802/aif.916 %G en %F AIF_1983__33_2_77_0
Fornaess, John Erik; Ovrelid, M. Finitely generated ideals in $A(\omega )$. Annales de l'Institut Fourier, Volume 33 (1983) no. 2, pp. 77-85. doi : 10.5802/aif.916. https://aif.centre-mersenne.org/articles/10.5802/aif.916/
[1] Hölder estimates for the Z-equation with a support condition, Pacific J. Math., 90 (1980), 249-257. | MR | Zbl
,[2] Pseudoconvex domains : Existence of Stein neighbourhoods, Duke J. Math., 44 (1977), 641-662. | Zbl
and ,[3] The Mergelyan property for weakly pseudoconvex domains, Manuscripta Math., 22 (1977), 199-208. | MR | Zbl
and ,[4] Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132. | MR | Zbl
,[5] Approximation of functions in pseudoconvex domains and Leibenzon's theorem, Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys., 19 (1971), 37-42. | Zbl
,[6] Finitely generated ideals in certain function algebras, J. Funct. Anal., 7 (1971), 212-215. | MR | Zbl
and ,[7] Boundary behavior of Z on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom., 6 (1972), 523-542. | MR | Zbl
,[8] A pseudoconvex domain not admitting a holomorphic support function, Math. Ann., 201 (1973), 265-268. | MR | Zbl
and ,[9] Die Cauchy-Riemannschen Differentialgleichung auf streng pseudokonveksen Gebieten : Stetige Randwerte, Math. Ann., 199 (1972), 241-256. | MR | Zbl
,[10] Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 449-474. | Numdam | Zbl
,[11] Øn Hölder estimates for Zu = f on weakly pseudoconvex domains, Cortona Proceedings, Cortona, 1976-1977, 247-267. | Zbl
,[12] Generators of the maximal ideals of A (D), Pac. J. Math., 39 (1971), 219-233. | MR | Zbl
,Cited by Sources: