Moebius-invariant algebras in balls
Annales de l'Institut Fourier, Volume 33 (1983) no. 2, pp. 19-41.

It is proved that the Fréchet algebra C(B) has exactly three closed subalgebras Y which contain nonconstant functions and which are invariant, in the sense that fΨY whenever fY and Ψ is a biholomorphic map of the open unit ball B of C n onto B. One of these consists of the holomorphic functions in B, the second consists of those whose complex conjugates are holomorphic, and the third is C(B).

On démontre que dans l’algèbre de Fréchet C(B) il y a exactement trois sous-algèbres Y qui sont fermées, qui contiennent des fonctions non constantes, et qui sont invariantes dans le sens suivant : fΨY lorsque fY et Ψ est une application biholomorphe de la boule unité ouverte B de C n sur B. Ce sont (i) l’algèbre des fonctions holomorphes dans B, (ii) l’algèbre des fonctions f dont les conjuguées f ¯ sont holomorphes, (iii) C(B).

@article{AIF_1983__33_2_19_0,
     author = {Rudin, Walter},
     title = {Moebius-invariant algebras in balls},
     journal = {Annales de l'Institut Fourier},
     pages = {19--41},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     number = {2},
     year = {1983},
     doi = {10.5802/aif.914},
     mrnumber = {699485},
     zbl = {0487.32012},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.914/}
}
TY  - JOUR
AU  - Rudin, Walter
TI  - Moebius-invariant algebras in balls
JO  - Annales de l'Institut Fourier
PY  - 1983
SP  - 19
EP  - 41
VL  - 33
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.914/
DO  - 10.5802/aif.914
LA  - en
ID  - AIF_1983__33_2_19_0
ER  - 
%0 Journal Article
%A Rudin, Walter
%T Moebius-invariant algebras in balls
%J Annales de l'Institut Fourier
%D 1983
%P 19-41
%V 33
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.914/
%R 10.5802/aif.914
%G en
%F AIF_1983__33_2_19_0
Rudin, Walter. Moebius-invariant algebras in balls. Annales de l'Institut Fourier, Volume 33 (1983) no. 2, pp. 19-41. doi : 10.5802/aif.914. https://aif.centre-mersenne.org/articles/10.5802/aif.914/

[1] M. L. Agranovskii, Invariant algebras on the boundaries of symmetric domains, Soviet Math. Dokl., 12 (1971), 371-374. | Zbl

[2] M. L. Agranovskii, Invariant algebras on noncompact Riemannian symmetric spaces, Soviet Math. Dokl., 13 (1972), 1538-1542. | MR | Zbl

[3] M. L. Agranovskii and R. E. Valskii, Maximality of invariant algebras of functions, Sib. Math. J., 12 (1971), 1-7. | MR | Zbl

[4] H. Alexander, Polynomial approximation and hulls of sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-75. | MR | Zbl

[5] C. A. Berenstein and L. Zalcman, Pompeiu's problem on spaces of constant curvature, J. d'Anal. Math., 30 (1976), 113-130. | MR | Zbl

[6] C. A. Berenstein and L. Zalcman, Pompeiu's problem on symmetric spaces, Comment. Math. Helvetici, 55 (1980), 593-621. | MR | Zbl

[7] R. Courant and D. Hilbert, Methoden der Mathematischen Physik, vol. II, Springer, 1937. | JFM | Zbl

[8] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, 1955. | MR | Zbl

[9] K. De Leeuw and H. Mirkil, Rotation-invariant algebras on the n-sphere, Duke Math. J., 30 (1963), 667-672. | MR | Zbl

[10] A. Nagel and W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J., 43 (1976), 841-865. | MR | Zbl

[11] W. Rudin, Function Theory in the Unit Ball of Cn, Springer, 1980. | MR | Zbl

[12] W. Rudin, Functional Analysis, Mc Graw-Hill, 1973. | MR | Zbl

[13] G. Stolzenberg, Uniform approximation on smooth curves, Acta Math., 115 (1966), 185-198. | MR | Zbl

[14] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, 1971. | MR | Zbl

Cited by Sources: