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MOEBIUS-INVARIANT ALGEBRAS IN BALLS

by Walter RUDIN(1)

1. Introduction.

Throughout this paper, n is a positive integer, C1 is the vector space
of all ordered n-tuples z = (z^ , . . .,z^) of complex numbers, with
hermitian inner product <z,w> = Sz^w,, norm |z| = <z,z>172, and
corresponding unit ball

B == {zeCn:\z\<l].

C(B) denotes the algebra of all continuous (not necessarily bounded)
functions / : B -^ C; multiplication is of course pointwise. Equipped with
the topology of uniform convergence on compact subsets (the so-called
compact - open topology), C(B) is a well-known Frechet algebra. The
term closed will always refer to this topology, unless something is said to
the contrary.

The group of all one-to-one holomorphic maps of B onto B (the
group of sM automorphisms of B) will be denoted by Aut(B). We also call
it the Moebius group of B; see §2.1.

(The dimension n is not mentioned in these notations. This simplifies
the writing and should cause no confusion.)

The letter M refers to Moebius — invariance. More specifically, we
shall say that Y is an Jf-space or an Jl-algebra in C(B) if Y is a closed
subspace or subalgebra of C(B) such that the compositions / o \|/ belong
to Y for all / eY and all \|/eAut(B).

For example, H(B), the set of all holomorphic functions with domain

0 This research was partially supported by NSF Grant MCS 8100782 and by
the William F. Vilas Trust Estate.



20 WALTER RUDIN

B, is an ^-algebra, and so is conj H(B), the set of all / whose complex
conjugate J belongs to H(B).

Our main result confirms the conjecture [11; p. 287] that these are
essentially the only ones:

Main theorem. — The only Moebius-invariant closed subalgebras of
C(B) are

{0}, C, H(B), conjH(B), C(B).

Here C denotes the constant functions. Analogous results, with spaces
such as C(B), Co(B), C(S), L^S) (where S is the sphere that bounds
B) in place of C(B) may be found in [I], [2], [3], [10], [11; Chaps.
12, 13]. The present theorem seems to be new even when n = 1, i.e..,
when B is the unit disc U in C.

In outline, the proof is as follows:

Let Y be an c^-algebra that contains nonconstant functions. This
rules out {0} and C. Let Y^ consist of all radial /eY; recall that / is
radial if f(z) = f(\v) whenever |z| = |w|. A radial function in B may
thus be regarded, in a natural way, as being defined on the half-open
interval [0,1). There are two cases:

(I) If Y^ fails to separate points on [0,1) or if there is a point in B
where the radial derivative of every / e Y^ n C00 is 0, it will be proved
that every / eY is ^-harmonic (see § 5.1) and that Y is therefore one of
{0}, C, H(B), conjH(B).

(II) In the remaining case, a deep approximation theorem due to
Stolzenberg [13], [4], [14] leads to the conclusion that Y = C(B).

The work of Berenstein and Zaicman [5], [6], has been very helpful.
Although none of their results are used directly, their papers suggested that
spherical means might be the right tool to deal with Case (I).

I am very grateful to Jean-Pierre Rosay for discovering two errors in an
earlier version of this paper.

2. Preparation.

2.1. The group Aut(B). — As mentioned in the Introduction, this
consists of all holomorphic one-to-one maps of B onto B. It is generated
by ^ — the compact group of all unitary operators on the Hilbert space
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C" — and by the involutions (p^, one for every a e B, given by

a - P,z - J\ - |a|2 Q,z
(1) <Po(^) = 1 - <z,a>

where P ,̂ is the orthogonal projection of C" onto the subspace generated
by a, and Q^z = z — P^z. Chapter 2 of [11] contains a detailed
description of Aut (B). We will use the following facts :

(i) (p,(0)=a, (p,(a)=0, (p;1 = q>,.
(ii) If v(/eAut(B) and a = \KO), then i|/ = (p^U for some U e ^ .
(iii) |(p,(z)| = |(p,(a)|. Thus /((p,(z)) = /((p,(a)) if / is radial.
(iv) Formula (1) shows, for acB and Ue^, that

U(p,U-1 =(pu, .
•

2.2. Radialization. — If /eC(B), its radialization is the function f*
defined by

" - \J^
(1) /# = / oUr iU

J^

where d\J denotes Haar measure on ^ (normalized so as to have total
mass 1) or, equivalently, by

(2) ^(z)= f/(|z|0da(0
Js

where a is the rotation-invariant probability measure on the unit sphere
S, and z e B .

Note that U -> f o U is a continuous map of the compact group ^
into the Frechet space C(B); the existence of the vector-valued integral
(1) is thus assured. Moreover, if Y is an ^-space in C(B) and / eY ,
then / o U e Y for all U e ^U, and since Y is closed, we conclude that
/ ^eY .

2.3. The invariant Laplacian A. — Let A be the ordinary Laplacian
on C", given by

(1) A/ = 4 f: DA/
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where D, = 9/8z^ D, = a/Bz,. If /eC^B) and z e B , we define

(2) (S/)(z)=A(/o<p,)(0).

This operator is invariant in the sense that it commutes with Aut(B): if
\|x6Aut(B) then

(3) (A/)oi|/=S(/ov|/).

We note (see Chap. 4 of [11]) that there are other ways to describe X ,
namely

4n r
(4) (S/)(z) = lim-, {/((p.(r0)-/(z)} da(0

r~'u r Js

and

(5) (S/)(z)=4(l-|z|2) f; (8,,-z,z,)(DA/)(^).
i.k = 1

When / is radial, 2.1 (Hi) enables us to rewrite (4) in the form

(6) S/=l im^f{/o(p-/}da(0.
r-+o r Js '

This shows that S/eY^ if / e Y ^ n C 2 and Y is an ^T-space.

When / is radial and f(z) = g(r), r = |z|, a calculation leads from
(5) to

(7) (S/)(z) = (1 -rWW + (In- 1 -r2^! -r2) ̂ '(r).

For reasons that will become clear in § 2.6, we note that the change of
variables

(8) s=}2log{±rr9 G(5)=^(r)

turns (7) into

(9) (S/)(z) = G^s) + y(5)G/(5)
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where

(10) j(s) = tan h (s) + (2n -1) cot h(s).

The particular form of y will not be important; what matters is that y is a
continuous function on (0,oo).

2.4. Smoothing. — Let v be Lebesgue measure on B, normalized so
that v(B) = 1, and define

(1) dx(z)=(l-\z\2rn~ldv(z).

This measure is ^-invariant: f dx = (/°^)^T for all /eL^r),
JB JB

\|/eAut(B) [11; p. 28].
»

Suppose Y is an ^-space in C(B), / e Y ^ , h ̂  0 is a radial C°°-

function with compact support in B, such that \hd T = 1, and

(2) /,= f ^w)/o(p,riT(w).
JB

Then //,eY (for the same reason that was invoked in §2.2) and /^
converges to / in the topology of C(B) when the support of / shrinks to
the center of B. The invariance of T shows that w can be replaced by
Uvv in the integral (2); since h and / are radial and since
|(p^(Uz)| = |(p^(z)| (see 2.1 (iv)), /„ is radial. Moreover, it follows from
2,1 (iii) and the invariance of T that

(3) A(z)= f /i((p,(w))/(w)dT(w),
JB

which shows that ^eC°°(B).

To summarize: Y ^ n C 0 0 is dense in Y ^ . If, in addition, / is
bounded (or, more generally, if /(z^l—lz]^ is bounded in B for some
p) then one can define f^ for certain h that do not have compact support,
for example for

(4) UH^C.O-IWIT
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where m is sufficiently large and c^ is chosen so that h^dx = 1. Then
(3) becomes ^B

(5) /Jz) = c,(l - |z|T j^ î ^L /(w) rfx(w),

as in [10], [11; p. 282].

This furnishes real analytic approximations to /, letting m -> oo.

2.5. Spherical means. — These are usually defined by specifying the
center and the radius of the sphere over which a function is to be averaged
[8]. If one ignores the radius and instead specifies a point on the sphere, one
obtains a more symmetric object. Accordingly, we note that the average of
an / e C(B) over the sphere with center 0 that passes through the point
w e B is

(1) f /(Uw)dU = f^(w)
J ^

and we define Ay(z,w) to be the corresponding average of the « translate »
/o(p^ of /. Thus

(2) A^(z,w) = f /((p,Uw) dV = (f o (p,) * (w).
J^

It is clear that Ay(z,w) is always a radial function of w. If / is itself
radial, then the relations 2.1 (iii), (iv) show that

(3) A^(z,w) = A^(w,z)

so that Ay(z,w) is also radial in z .

Parts (ii) and (iii) of the following proposition exhibit another
symmetry property, one that does not depend on / being radial.

PROPOSITION. - If /eC(B) and v | /€Aut(B), then

(0 A^(z,w) = A^(v|/(z),w)

and, for z e B , w e B , 0 ^ r < l ,

(ii) f A^((p,(r0,w) da(0 = f A/z,(p,(ri;)) da(Q.
Js Js
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If /eC^B) r/^n

(iii) 2S^A/z,w) = 2^A/z,w).

The symbol A^ indicates that w is to be heldfixed and that the
differentiations are with respect to z^ , . . . , z ^ . Likewise for S^.

The differential equation (iii) occurs, for more general symmetric
spaces, in [6; p. 613]. Its analogue on R" is a classical equation of
Darboux [8; p. 88]. The proof that is given below is based on 2.3(4), and is
quite simple.

Proof. — Fix /, z, w, choose any (peAut(B) such that (p(0) = z.
Then (p^ = (pU' for some IT e ^U, and (2) becomes

Ay((p(0),w)= [ (/oq^LrUHOrfU == | (/o (p)(Uw) rfU.
J^ ^k

This holds when / is replaced by / o \|/. Hence

A^^((p(0),w)= f (Jov|/o(p)(Uw)rfU=A^(v|/((p(0)),w).
J^

This proves (i).

Next, replace U by U~ 1 in (2) and use 2.1 (iv) to rewrite (2) in the
form

(4) A^(ri>) = [ /(U-1^^))^.
J^

Integrate (4) with respect to rfo(0 over S, switch the integrals on the
right, note that (3 can then be replaced by U~ 1 (3 in the (inner) ^-integral,
and that therefore

[ A^(r(»<te(0 = f da(Q f /(U-1 (p^(vv) dV
Js Js J^

= fA/0,(p^(w))rfa(0.
Js

Since Ay is radial in the second variable, r^ and w can be interchanged
in the last integral, yielding the case z = 0 of (ii):

(5) f Ay(ri>) da(0 = [ Ay(0,(p,(r0) da(Q.
Js Js
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But (5) holds with / o <p^ in place of /. Hence (i) leads from (5) to the
general case of (ii).

Now subtract Ay(z,w) from each side of (ii), divide by r2, and let
r -> 0. By 2.3(iv) this completes the proof of the Proposition.

One further remark: If /eC^B) is radial, and if we put
Ay(z,w) = A*(s,0, where

l , l + M l , l + M(6) "^T^ ^i^rqwi
then formula (9) of § 2.3 shows that the differential equation (iii) satisfied
by Ay(z,w) takes the form

^A* 3A* ^A* ,3A*
(7) ^-+T(s)^-=^-+y(o^-

where y is as in 2.3 (10).

2.6. A uniqueness theorem. — For a concise statement, let us associate
to each /eC(B) and to each v|/€Aut(B) the function v|//: [0,1) -> C

(1) W)(r)= f(W))da(Q.
Js

THEOREM. — If feCl(B) and if there is one ae(0,l) such that

(2) W)(a) = (W(a) = 0

for every \|/ e Aut (B), then f = 0.

This may be regarded as a limiting case of a « two-radius » theorem [5],
[6], the two radii being equal.

Proof. - Fix a, 0 < a < 1, and let X be the set of all /eC^B)
that satisfy (2) for every v|/. Then X is an ^-invariant closed subspace
of C^B). As in §2.2, / ^ e X whenever / eX .

If z e B and t;eS, then (q>^/)(r) = A^(z,rQ. Hence (2) implies

(3) A^aQ=^A^rQ \^ = 0

for all / e X. Apply this to a radial fe X and change variables as at the
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end of § 2.5. The resulting function A* is then a solution of the hyperbolic
equation

^A* ^A* . . ^A* ..M* .(4) ^-^^-ar-^0^-'0
that satisfies the initial conditions

(5) A*(5,a)= 1^(5,01^=0

for all 5 > 0, where a = . log {(1 +a)/(l -a)} .

A standard uniqueness theorem [7; pp. 310-311] implies now that
A* (5,0 = 0 in the region in which 0 < ^ < a, s + t > a. Going back
to our original variables, this says that Ay(z,w) = 0 when 0 < |w[ < a
and

1 -h M 1 -h H 1 4- fl
u 1 - |z| ' 1 - H 1 - a '

When |z| > a, this holds for arbitrarily small |w|; hence

/ (z)=A^(z,0)=0,

by continuity.

We have now proved that every / € X^ vanishes outside the ball aB.
Hence (see §2.4) / can be approximated by real-analytic functions
fi e X^ . Each ^ vanishes outside aB, by what we just proved, hence f^
(being real-analytic) vanishes in all of B. Thus / = 0.

We conclude that X^ = {0}.

Finally, if / e X then (fo^yeX^ for every \|/eAut(B). Hence
(fo^y = 0. Thus, for any z e B

(7) f(z) = (/ o (p,)(0) = (/ o (p,)̂  (0) = 0.

2.7. Separation of points. — If f is a nonconstant function mth domain
B and

X = {/ov|/:v|/eAut(B)},

then X separates points on B.
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The proof is exactly like that of Proposition 4 in [9]. If X fails to
separate, the ^-invariance of X shows that X identifies 0 and some
a + 0. Setting r = \a\, the ^-invariance of X implies then that
gW = gW for all g € X, (3 e S. The same holds for g o (p^ when
M = r, and shows that g(z) = g(0) for all ze(p^(rS), i.e., for all z in
the ball r^B, where r^ = 2r/(l+r2). Continuing in this fashion, we see
that every member of X is constant, a contradiction.

2.8. Real functions. — If Y is an ^-algebra in C(B) that contains a
nonconstant real-valued function /, then Y = C(B).

Proof. — Let Yy be the c^-algebra generated by /. Then Yy is a
self-adjoint subalgebra of Y which separates points on B, by § 2.7. The
Stone-Weierstrass theorem implies therefore that the restriction of Yy to
any compact K c= B coincides with C(K). Thus Y^. == C(B).

3. Unitary invariance.

This section describes some aspects of harmonic analysis in closed
subspaces and subalgebras Y of C(B) that are ^-invariant: If / e Y
and Ue^ then / o U e Y . (See §2.1.)

These are called ^-spaces and ^/-algebras, respectively.

3.1. The spaces H(p,^r). For nonnegative integers p and q, we say
that feH(p,q) iff is the restriction to S of a homogeneous harmonic
polynomial on C" that has total degree p in the variables z ^ , . . . , z^ and
total degree q in z ^ , . . . , z,,. The word harmonic refers to the ordinary
Laplacian. Being harmonic, these polynomials are uniquely determined by
their restriction to S.

The H(p,qVs are pairwise orthogonal in L2(a) (a is defined in § 2.2),
they span L^o), and they are ^-invariant. In fact, they are minimally
^-invariant: no proper subspace of H(p,g), except {0}, is ^-invariant.
(See Section 12.2 of [11].)

In the special case n = 1, H(p, 0) and H(0, q) are the one-
dimensional spaces (on the unit circle) spanned by e1^ and ^-i4e,
respectively. The other H(p, qVs are {0}. Whenever some later
discussion refers to H(p, q) with p > 0 and q > 0, it will be tacitly
understood that n > 1.
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The orthogonal projection from L^cr) onto H(p,q) will be denoted
by Kpq. These n's commute with ^: If /eL^a) and Ue^ , then

7l(/oU) = (7l/)oU.

The KpqS are given by integral kernels ([11], Theorem 12.2.5). Hence they are
also continuous from C(S) into C(S).

3.2. The restriction Y^. - Let Y be a ^-space in C(B), fix a,
0 < a < 1, and define Y^ to be the space of all /„ e C(S) such that

(1) fa(Q=fW (i;eS)

for some / e Y.

Note that /a ls essentially the restriction of / to the sphere aS,
except that we take its domain to be S rather than aS .

Since Y^ need not be closed in C(S) (example: Y = H(B)) we
include the proof of the following proposition. (Otherwise, we could just
refer to Theorem 12.3.6 of [11].)

3.3. PROPOSITION. — Suppose that Y is a closed ^-space in C(B), and
0 < a < 1. Then, for any (p,q), either

(i) H(p,^)c=Y,, or
(ii) H(p,^)lY,.

(The symbol -L refers to orthogonality in L^o).)

Proof. - Define p: Y -> C(S) by p/=/ , . Thus pY == Y,.

Assume that (ii) fails for some (p,q), fixed from now on, and write n
in place of Kpq. The operator

Tip: Y^H(p^)

is linear, continuous, and commutes with ^, so that its range is a
^-invariant subspace of H(p,^) which (because (ii) fails) is + {0}. The
^-minimality of W.(p,q) shows therefore that

7cpY=H(p,g).

The null-space N of Ttp is closed in Y, is ^-invariant, and

dim (Y/N) = dim H(p,q) < oo .
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Therefore N is complemented in the Frechet space Y. Moreover,
f -> f o\3 is continuous from Y to Y, for every U in the compact
group ^. These facts imply (see Theorem 5.18 of [12]) that there is a ^U-
invariant space N' c= Y such that Y = N © N' (direct sum).

We claim that H(p,^) = pN'.
Note that np : N' -> H(p,q) -is a bijection. It therefore has an inverse

A : H(p,q)->W. Since N' is ^-invariant, and n and p commute with
^, so does A. The same is true of

Tt^pA: H(p,q) -^ H(r,s),

for all (r,s). By Theorem 12.2.7 of [II], it follows that Tt^pA annihilates
H(p,<?) whenever (r,s) ^ (p,q). This implies that

pAH(p^) 1 H(r,5)

if (r,s) ^ (p,q)' Since N7 = \H(p,q), we conclude that

pN'c:H(M).

Since n is the identity map on H(p,^),

pN'^TipN^H^),

and since pN' c: pY = Y^, the proof is complete.

COROLLARY. — Y^ is dense in C(S) if and only if H(p,^) c Y^ for all
(M).

3.4. Some facts about ^-algebras. — Let Y now be a ^-algebra in
C(B), 0 < a < 1. The following properties of its restriction Y^ can be
found in Sections 12.4 and 12.5 of[l I], but it seems preferable to give quick
proofs, based on Proposition 3.3, of the few simple facts that will be needed
in the present paper.

(i) If H(l,0) c Y, and H(0,l) c= Y, then Y, is dense in C(S).

Proof. — Ya contains ^ and ^ for i = 1, . . . , n, hence contains all
polynomials in these variables, including the constants, since Z (3^1 = 1.

To simplify the notation in (ii) and (iii), let us write u = ̂ , v = (32 •
(ii) If H(p,q) c: Y^ for some (p,q) with p > q then H(w,0) c Y^ for

some m > 0.
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Proof. — The functions u^ and vW are in Y^, hence so is their
product iMFl2^^"4, and this is not orthogonal to (uiQ^e H(w,0),
w = 2p - 2q .

(iii) If H(2,0) c= Y,, H(0,2) c Y,, and Y, separates points on S,
r/i^n H(l,0) c Y^.

Proo/ - Every /eY^ is in the L^closure of the sum of the H(^YS
that lie in Y^. If Y^ separates points on S, some H(p,q) c= Y^ has
p - q odd; otherwise f(Q = /(-Q for all / eY^. Pick such a pair
(p,q). Then Y^ contains

MU, M2 , I;2, M^4

hence, if p > q, also

(Ml;^-1.^-2.^-4-1.^ = IM2^-2^

since p — q — 1 is even. If p < q, we use

(M^"1.^.^-^-1.^ = H44-2!!;!2^-2^.

In either case, we see that Y^ is not orthogonal to MeH(l ,0 ) .

3.5. LEMMA. — Let X be a ^-invariant subalgebra of C(S) such that
H(p,^)(=X /or all (p,q).

Let T : X -> C(S) fc^ hn^ar, multiplicative, + 0, and suppose that T
commutes mth ^.

T^n rA^r^ is a y e C, y 9^ 0, SMC/I r/iat

(1) Th = y^-^

/or a« h€H(p,q).

Proof. - The map TI,,T : H(p,q) -^ H(r,s) is linear and commutes with
^, hence (by Theorem 12.2.7 of [11]) is 0 when (r,s) + (p,q), and is a
multiple of the identity when (r,s) = (p,q). Thus TH(p,^) 1 H(r,s) if
(r,s) ^ (p,^). It follows that TH(p,q) c= H(p,^), and that there are
constants Cpy such that

(2) Th=c^h if heH(p,q).
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Since z^z^eH(p,q), the multiplicativity of T shows that

(3) Cp+r,q+s = CpqCrs-

Put h(^)=l-n^. Since |z|2 - nz^z^ is harmonic in €',
A e H ( l , l ) . Also, ^eH(l,0), ^€H(O,I) . Hence T, applied to
1 — h = n^i, yields

(4) Coo - c^h = CoiCio(l-^).

Sy (3). <"oo = 1 and Cn = CoiCio. Hence (4) gives c^ = 1. Setting
7 = c lo» (3) leads now to

(5) ^=(^0)^01)^=7?-,.

4. ^-Algebras in C(B).

4.1. The operators Q and Q. - We define these by

(1) Q = D, - z, f zA, Q = D, - z, ^ zA
i=l f=l

where D; = 81 Sz^ D, = a/^z,, as before. These operators are closely
related to ^-invariance:

(i) If Y is an Jl-space in C(B) and / e Y n C 1 , r/^n Q/eY and
Q/eY.

To see this, put

f(.\ - ft2!^- ^2 sz, \
Mz) ~ ^T+az^?TTaz7' • ' • 'r+az^J

where a eC , |a| < 1, s = (1-aa)^2 (see §2.1) and calculate that

Of-sf-\ f V - ^ i
W-^ la=0 , Q^-^'l-0.

Writing a = x -h r^,

^^""o^--^-1;^^-^-
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These quotients lie in Y, and they converge to the respective derivatives in
the topology of C(B). Thus Q/ e Y. The same argument applies to Q/.

Suppose next that /e Y^ n C°°. Being radial, / can be written in the
form

f(z)=g(\z\2)=g(z,z^ • • •+z^)

where g has domain [0,1). It follows from (1) that

(Q/X^-^O-M^W,
(3) (Qf)(z)=Zl(l-|z|2)g'(|z|2).

If we apply Q and Q to (2) and (3), we obtain:

(ii) If 0 < a < 1 and g'(a2) == 0, then

(4) (Q2f)W=a2(l-a2)2gff(a2)^

and
(5) (Q2f)W=a2(l-a2)2gft(a2)^

for all ^ e S .

4.2. LEMMA. - Fix a, 0 < a < 1. For ^-algebras Y in C(B), the
implications

(a) => (?) => (y)

Wd among the following properties :
(a) Y^ is not dense in C(S).
(P) 3//3r = 0 on aS /or ^?ry /eY^ n C°°.

(y) A/ = 0 on aS for every f e Y^ n C°°.

Proo/. - If a//3r ^ 0 on aS for some / e Y^ n C°°, where
/(z) == g(|z|2) as in §4.1, then g^a2) + 0. Since Q/ and Q/ are in Y,
formulas 4.1(2) and 4.1(3) show that Y^ contains H(l,0) and H(0,l),
hence Y^ is dense in C(S), by § 3.4 (i). This proves that (a) implies (P).

Suppose next that (P) holds, but that some / e Y^ n C°° has
82f/9r2 + 0 on aS. This will lead to a contradiction.

-Write f(z) = g(\z\2), as before. Then g'(a2) = 0 but g^a^^O.
Let X be the ^-algebra in C(B) generated by /. Then Q^eX,
Q^eX, so that X^ contains H(0,2) and H(2,0), by 4.1(4), (5). By
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§2.7, X separates points in B. It follows now from §3.4(iii) that
H(l,0) c= X^. Hence there is an heX such that h(aQ = ^ for all
i;6S.

The definition of X shows that X n C°° is dense in X. Hence there
are functions / ^ •eXnC 0 0 such that h^aQ -> i^ uniformly on S, as
i -> oo . Define

(1) F,(z) = (WY(z) (z G B,i= 1,2,3,...).

By 4.1(2),

(2) F,(ri;) = r(l -r2)^2) f h,(rQ^ da(Q.
Js

Now apply 8/8r to both sides of (2) and evaluate at r = a. Since
F/eX^ n C00 c Y^ nC00 , and (?) holds, the left side gives 0. Since
g'(a2) = 0 , we obtain

(3) 0 = a(\ -aY(a2) f A,(^i da(Q
Js

for f = 1,2,3, . . . . For large i, the integral is ^ 0. Thus ^'(a2) = 0,
and we have our contradiction.

This proves that (?) implies (y).

We state one more lemma before we turn to the proof of the main
theorem.

4.3. LEMMA. — Let m be a positive integer, put

(1) u^^zT ( f= l , . . . ,n )

and suppose that f : B -> C satisfies

(2) A0(z)=0 and S(^/)(z) = 0

for l ^ i ^ n , z e B . Then /eH(B).

Proof. — Formula 2.3 (5) shows, after a little computation, that
^(Uif) — M»S/ is equal to

(3) 4(l-|z|2)mzm-l{DJl-z, f z,D,/l.
I k = l J
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The expression in { . . . } is therefore 0, for all i. Setting w^ = DjJ', this
says that the vector w == (wi , . . .,w^) satisfies

(4) w - <w,z>z = 0.

Since |<w,z>z| ^ [z^n and |z|2 < 1, this forces w = 0, so that the
Cauchy-Riemann equations DjJ* = 0 hold for 1 ^ k ^ n.

5. Proof of the main theorem.

5.1. — To eliminate the trivial cases Y = {0} and Y = C, we assume
from now on that Y is an ^-algebra in C(B) that contains nonconstant
functions. Consider the following four properties which Y may or may
not have:

(i) There exists a ^ b in (0,1) such that

f^(aQ=f^bQ

for every f e Y, i; e S.

(ii) There exists ae(0,l) such that

8f/3r = 0 on aS

for every f e Y^ n C°°.

(iii) There exists a €(0,1) such that

f^W=f^(0)

for every / eY, ^ e S .

(iv) Every / eY is ^-harmonic in B, i.e. (S/)(z) = 0 if / eY,
z e B .

We will prove that (i) => (ii) => (iii) => (iv). If (iv) holds, then every
/ e Y satisfies the invariant mean value property

/W0))= f fWrQ)da(Q

for all \|/eAut(B), 0 < r < 1 [11; pp. 43, 52]. Hence Y^ = C, so that
(iv) => (i).
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These four properties of an ^-algebra Y thus turn out to be
equivalent.

If they hold, then Y = H(B) or Y = conj H(B).

If they fail, then Y = C(B).

These assertions will be proved in § 5.5, § 5.7.

5.2. Proof that (i) implies (ii). - Assume that (i) holds. Lemma 4.2
shows that (ii) holds if one of Y^ or Y^ fails to be dense in C(S). So let
us assume that both are dense in C(S).

Pick h e Y with ^ = 0. If g e Y , then hgeY, and (i) gives

f h^ da = (hgVW == (hgV(bQ = S h^da=0.
Js Js

Since Y^ is dense in C(S), it follows that ^ = 0.

Consequently, f^ -> /„ is a one-to-one linear multiplicative map of Y^
onto Y^ that commutes with ^. By Lemma 3.5, there i s a y e C . y ^ O ,
such that

(1) h(aQ = r-^bQ

whenever heY and ^eH(p,^). If \y\ were 1, this would imply
h(aQ = h(byQ, hence also f(aQ = f(byQ for all / eY, contradicting
the fact that Y separates points in B. Thus jy] + \.

Now suppose / e Y ^ n C 0 0 , /(z) = g(\z\2). Formulas 4.1 (2), (3)
show that (Q/)beH(0,l), (QAeH(l,0). Hence (1), applied to Q/
and Q/ in place of h, yields

and
a(\ -a^g^a2)^ = y-^O-fcW2)^

a^-a^g^a2)^ = ̂ (l-b^W,.

Since |y| + 1, we must have g^a2) = g\b2) = 0. Thus 8f/8r = 0 on
aS and on fcS. In particular, (ii) holds.

5.3. Proof that (ii) implies (iii). - If (ii) holds. Lemma 4.2 shows that
S/= 0 on aS, for every / e Y ^ n C 0 0 . Fix such an /. Then



MOEBIUS-INVARIANT ALGEBRAS IN BALLS 37

(/ocp^eY^ nC°°, so that

(1) S((/o(p^) = 0 on aS

for all z e B. Since

(2) A^(z,w)=(/o(p,)(w)

(see § 2.5), we have 2^Ay(z,w) = 0 whenever z e B , weaS . Proposition
2.5 (iii) implies therefore that

(3) S,A/z,w)==0 (zeB.weaS),

i.e., that z -^ Ay(z,w) is ^-harmonic. But it is also radial (since / is
radial; see 2.5(3)), hence is constant, hence equals Ay(0,w). We now
conclude from (2) that, for some fixed weaS,

(4) ( /o(p^(w)=/^(w)=/(w).

Also, because (ii) is assumed to hold,

(5) —(/oq>^=0 on aS.

Theorem 2.6 can now be applied to / — /(w), and leads to the
conclusion that every / eY^ n C°° is constant. Since Y^ n C°° is dense
in Y^, it follows that Y^ = C. Hence (iii) holds.

5.4. Proof that (iii) implies (iv). — The assumption is now that

(1) /(0)= ( f a d e
Js

for every / eY. Since / -> /(O) is multiplicative on Y, the integral in
(1) is a multiplicative linear functional on Y^ which is bounded relative to

the supremum norm. If Y^ were dense in C(S), then h -> A da would

therefore be multiplicative on C(S), which it is not. Thus Y^ is not dense
in C(S).

Let g e Y n C00, put h = g* . The implication (a) => (y) of Lemma
4.2 shows that (&/i)«) = 0. Since AheY^ n C°° (§2.3), (1) applies to
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it and shows that (Ah)(0) = 0. Hence also (Ag)(0) = 0. (See 2.3 (6).) The
same applies to g o (p^ in place of g , so that (S^)(z) = 0 for all z e B.

Every g e Y n C°° is thus ^-harmonic. In particular, this is true for
every geY^ n C°°. But the constants are the only radial ^-harmonic
functions in B. Since Y^ n C°° is dense in Y^, we conclude that
Y^ = C.

If now /eY, and x|/eAut(B), it follows that

(2) (/ o ̂  (z) = (/ o ̂ y (0) = /(i|/(0))

for all z e B. This says that / has the invariant mean value property (see
§5.1), and therefore / is ^-harmonic [11; p. 52].

5.5 ^-Algebras of ^-harmonic functions. — The assumption is now
that every / eY is ^-harmonic. The desired conclusion is that then
Y = H(B) or Y=conjH(B) . The proof uses the following four
observations.

(1) It is enough to prove that Y c: H(B) or Y c= conj H(B). For if an
^-space Y satisfies one of these inclusions and if Y contains
nonconstant functions (which is now our standing assumption) then
equality actually holds [11; p. 287].

(2) If 0 < a < 1 and if two ^t-harmonic functions with domain B
coincide on aS, then they coincide on B. Indeed, the maximum principle
satisfied by ^-harmonic functions [11; p. 55] shows that they coincide in
aB, hence they coincide on all of B since they are real — analytic [11;
p. 52].

(3) If fa is real-valued for some f e Y, then f(z) is real for all z e B.
This follows from (2) if the maximum principle is applied to the imaginary
part of /.

(4) There is some (p,q) + (0,0) such that H(p,^) c Y^,. Otherwise,
H(p,^) 1 Y^ for all (p,q) ^ 0 (Proposition 3.3), so that
Y^ c H(0,0) = C. This implies Y c C, by (2). But this trivial case has
been excluded.

Suppose now that p > q for some H(p,^)c:Y^. By 3.4 (ii),
H(m,0) c: Yfl for some m > 0. Hence there are functions A ^ e Y
( f = l , . . .,n) and that h,(aQ = «y". By (2), this implies that A,(z) = zT
in B. This enables us to conclude from Lemma 4.3 that Y c: H(B).
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Similarly, if p < q for some H(p,q) c= Y^, we conclude that
Y c conjH(B).

Finally, if neither of these two cases occurs, then H(p,p) c Y^ for
some p > 0. Writing u = i^, i; = i^» as in §3.4, Y^ contains M^ and
vW, hence also their product {uv^ . By (3), there is a real-valued / e Y
with /^ = IMI;!^. Hence / is not constant, and §2.8 implies that
Y = C(B), contradicting the assumption that every member of Y is en-
harmonic. Thus \a contains no H(p,p) with p > 0, so that one of the
preceding two cases must occur, by (4).

Because of (1), this completes the proof of one half of the main
theorem. The second half uses the separation lemma which is proved next,
although it is quite elementary.

5.6. LEMMA. — Let 0 be a collection of continuous maps from a compact
space K into some Hausdorff space. If

(a) <I> separates points on K, and
(b) to every x e K corresponds a g^e^> which is one-to-one in some

neighborhood V^ of x,

then some finite subcollection of 0 satisfies (a).

Proof. - Pick p = (x,y) e K2, where K2 = K x K. If x + y , there
is an fp e <1> with fp(x) + fp(y). By continuity, p has a neighborhood
W^ in K2 such that //^) + //TI) for all (^Ti)eW^.

If x = y , choose ^, V^ as in (fc), and put fp = ̂ , Wp = V2.
Then Wp is a neighborhood of p in K2 such that fp(Q + fpW for all
(^,T|) e Wp that have ^ r\.

By compactness, finitely many Wp5 cover K2 . The corresponding fpS
separate points on K.

5.7. Proof that Y = C(B) in the remaining case. — We assume now
that Y fails to have properties 5.1 (i), (ii), (iii). Fix i^eS . Since
Y^ n C°° is dense in Y^, the failure of (i) and (iii) shows that the
functions

(*) t^f(tQ, /eY^nC 0 0

separate points on [0,1). The failure of (ii) shows that to every (6 (0,1)
corresponds some function (*) that is one-to-one in some neighborhood
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of t. Since nonconstant radial functions are not ^-harmonic, some
/ e Y^ n C°° has (S/)(z) + 0 at some z e B. Setting h = (/ o (p^ ,
A e Y^ n C°°, and (Afc)(0) + 0. The corresponding function (*) has its
second derivative 7^ 0 at t = 0, hence is one-to-one on [0,5) for some
8 > 0.

We can now apply Lemma 5.6 and conclude that to every re (0,1)
corresponds a finite set of functions /i, . . . ,/N e Y^ n C°° that separates
points on the compact interval [0,r]. If

r(0=(/i(0, ...,/N(O) (o<^r)
then r is a smooth arc in C^. A theorem of Stolzenberg ([13],[4],
[14; Chap. 6]) asserts that the polynomials in Z i , . . . , Z N are dense in
C(F). The polynomials in /i, . . . , /N are thus dense in C([0,r]). This
implies that Y^ (restricted to the set of all ^, 0 ^ t < 1) is equal to
C([0,l)). In particular, Y^ contains nonconstant real functions. Hence
Y = C(B), by §2.8, and the proof is complete.

5.8. REMARK. — In contrast with ^-algebras, there is a huge collection
of M'-spaces in C(B), for every dimension n > 1. The ones that are
easiest to describe are the eigenspaces X^ of the invariant Laplacian A,
one for every 'k e C: f e X,, if and only if Af = 'kf . These spaces are
closed in C(B) [11: p. 52]; for each ^, (X^ is a one-dimensional space
[11; p. 50]; to every ae(0,l) correspond infinitely many X such that
(X^y identifies 0 and aC, [11; p. 58]. The same proof shows that if
0 < a < b < 1, then (X^ identifies a and b, for infinitely many X,,
and that to every ^€(0,1) correspond infinitely many ^ such that
Sf/8r =0 on aS for all / e (X,)^ .

In the context of ^-spaces, properties 5.1 (i), (ii), (iii), and (iv) are thus
not equivalent.
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