On démontre que dans l’algèbre de Fréchet il y a exactement trois sous-algèbres qui sont fermées, qui contiennent des fonctions non constantes, et qui sont invariantes dans le sens suivant : lorsque et est une application biholomorphe de la boule unité ouverte de sur . Ce sont (i) l’algèbre des fonctions holomorphes dans , (ii) l’algèbre des fonctions dont les conjuguées sont holomorphes, (iii) .
It is proved that the Fréchet algebra has exactly three closed subalgebras which contain nonconstant functions and which are invariant, in the sense that whenever and is a biholomorphic map of the open unit ball of onto . One of these consists of the holomorphic functions in , the second consists of those whose complex conjugates are holomorphic, and the third is .
@article{AIF_1983__33_2_19_0, author = {Rudin, Walter}, title = {Moebius-invariant algebras in balls}, journal = {Annales de l'Institut Fourier}, pages = {19--41}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {2}, year = {1983}, doi = {10.5802/aif.914}, mrnumber = {699485}, zbl = {0487.32012}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.914/} }
TY - JOUR AU - Rudin, Walter TI - Moebius-invariant algebras in balls JO - Annales de l'Institut Fourier PY - 1983 SP - 19 EP - 41 VL - 33 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.914/ DO - 10.5802/aif.914 LA - en ID - AIF_1983__33_2_19_0 ER -
Rudin, Walter. Moebius-invariant algebras in balls. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 19-41. doi : 10.5802/aif.914. https://aif.centre-mersenne.org/articles/10.5802/aif.914/
[1] Invariant algebras on the boundaries of symmetric domains, Soviet Math. Dokl., 12 (1971), 371-374. | Zbl
,[2] Invariant algebras on noncompact Riemannian symmetric spaces, Soviet Math. Dokl., 13 (1972), 1538-1542. | MR | Zbl
,[3] Maximality of invariant algebras of functions, Sib. Math. J., 12 (1971), 1-7. | MR | Zbl
and ,[4] Polynomial approximation and hulls of sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-75. | MR | Zbl
,[5] Pompeiu's problem on spaces of constant curvature, J. d'Anal. Math., 30 (1976), 113-130. | MR | Zbl
and ,[6] Pompeiu's problem on symmetric spaces, Comment. Math. Helvetici, 55 (1980), 593-621. | MR | Zbl
and ,[7] Methoden der Mathematischen Physik, vol. II, Springer, 1937. | JFM | Zbl
and ,[8] Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, 1955. | MR | Zbl
,[9] Rotation-invariant algebras on the n-sphere, Duke Math. J., 30 (1963), 667-672. | MR | Zbl
and ,[10] Moebius-invariant function spaces on balls and spheres, Duke Math. J., 43 (1976), 841-865. | MR | Zbl
and ,[11] Function Theory in the Unit Ball of Cn, Springer, 1980. | MR | Zbl
,[12] Functional Analysis, Mc Graw-Hill, 1973. | MR | Zbl
,[13] Uniform approximation on smooth curves, Acta Math., 115 (1966), 185-198. | MR | Zbl
,[14] The Theory of Uniform Algebras, Bogden and Quigley, 1971. | MR | Zbl
,Cité par Sources :