Moebius-invariant algebras in balls
Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 19-41.

On démontre que dans l’algèbre de Fréchet C(B) il y a exactement trois sous-algèbres Y qui sont fermées, qui contiennent des fonctions non constantes, et qui sont invariantes dans le sens suivant : fΨY lorsque fY et Ψ est une application biholomorphe de la boule unité ouverte B de C n sur B. Ce sont (i) l’algèbre des fonctions holomorphes dans B, (ii) l’algèbre des fonctions f dont les conjuguées f ¯ sont holomorphes, (iii) C(B).

It is proved that the Fréchet algebra C(B) has exactly three closed subalgebras Y which contain nonconstant functions and which are invariant, in the sense that fΨY whenever fY and Ψ is a biholomorphic map of the open unit ball B of C n onto B. One of these consists of the holomorphic functions in B, the second consists of those whose complex conjugates are holomorphic, and the third is C(B).

@article{AIF_1983__33_2_19_0,
     author = {Rudin, Walter},
     title = {Moebius-invariant algebras in balls},
     journal = {Annales de l'Institut Fourier},
     pages = {19--41},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     number = {2},
     year = {1983},
     doi = {10.5802/aif.914},
     mrnumber = {699485},
     zbl = {0487.32012},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.914/}
}
TY  - JOUR
AU  - Rudin, Walter
TI  - Moebius-invariant algebras in balls
JO  - Annales de l'Institut Fourier
PY  - 1983
SP  - 19
EP  - 41
VL  - 33
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.914/
DO  - 10.5802/aif.914
LA  - en
ID  - AIF_1983__33_2_19_0
ER  - 
%0 Journal Article
%A Rudin, Walter
%T Moebius-invariant algebras in balls
%J Annales de l'Institut Fourier
%D 1983
%P 19-41
%V 33
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.914/
%R 10.5802/aif.914
%G en
%F AIF_1983__33_2_19_0
Rudin, Walter. Moebius-invariant algebras in balls. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 19-41. doi : 10.5802/aif.914. https://aif.centre-mersenne.org/articles/10.5802/aif.914/

[1] M. L. Agranovskii, Invariant algebras on the boundaries of symmetric domains, Soviet Math. Dokl., 12 (1971), 371-374. | Zbl

[2] M. L. Agranovskii, Invariant algebras on noncompact Riemannian symmetric spaces, Soviet Math. Dokl., 13 (1972), 1538-1542. | MR | Zbl

[3] M. L. Agranovskii and R. E. Valskii, Maximality of invariant algebras of functions, Sib. Math. J., 12 (1971), 1-7. | MR | Zbl

[4] H. Alexander, Polynomial approximation and hulls of sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-75. | MR | Zbl

[5] C. A. Berenstein and L. Zalcman, Pompeiu's problem on spaces of constant curvature, J. d'Anal. Math., 30 (1976), 113-130. | MR | Zbl

[6] C. A. Berenstein and L. Zalcman, Pompeiu's problem on symmetric spaces, Comment. Math. Helvetici, 55 (1980), 593-621. | MR | Zbl

[7] R. Courant and D. Hilbert, Methoden der Mathematischen Physik, vol. II, Springer, 1937. | JFM | Zbl

[8] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, 1955. | MR | Zbl

[9] K. De Leeuw and H. Mirkil, Rotation-invariant algebras on the n-sphere, Duke Math. J., 30 (1963), 667-672. | MR | Zbl

[10] A. Nagel and W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J., 43 (1976), 841-865. | MR | Zbl

[11] W. Rudin, Function Theory in the Unit Ball of Cn, Springer, 1980. | MR | Zbl

[12] W. Rudin, Functional Analysis, Mc Graw-Hill, 1973. | MR | Zbl

[13] G. Stolzenberg, Uniform approximation on smooth curves, Acta Math., 115 (1966), 185-198. | MR | Zbl

[14] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, 1971. | MR | Zbl

Cité par Sources :