Soit un opérateur linéaire différentiel à coefficients holomorphes, où
et
On considère le problème de Cauchy aux données holomorphes
On peut facilement obtenir une solution formelle , mais en général elle diverge. On montre sous certaines conditions que pour un secteur arbitraire d’ouverture moindre qu’une constante déterminée par , il y a une fonction holomorphe sauf sur , telle que et quand dans .
Let be a linear partial differential operator with holomorphic coefficients, where
and
We consider Cauchy problem with holomorphic data
We can easily get a formal solution , bu in general it diverges. We show under some conditions that for any sector with the opening less that a constant determined by , there is a function holomorphic except on such that and as in .
@article{AIF_1983__33_1_131_0, author = {Ouchi, Sunao}, title = {Characteristic {Cauchy} problems and solutions of formal power series}, journal = {Annales de l'Institut Fourier}, pages = {131--176}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {1}, year = {1983}, doi = {10.5802/aif.907}, zbl = {0494.35017}, mrnumber = {85g:35014}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.907/} }
TY - JOUR AU - Ouchi, Sunao TI - Characteristic Cauchy problems and solutions of formal power series JO - Annales de l'Institut Fourier PY - 1983 SP - 131 EP - 176 VL - 33 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.907/ DO - 10.5802/aif.907 LA - en ID - AIF_1983__33_1_131_0 ER -
%0 Journal Article %A Ouchi, Sunao %T Characteristic Cauchy problems and solutions of formal power series %J Annales de l'Institut Fourier %D 1983 %P 131-176 %V 33 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.907/ %R 10.5802/aif.907 %G en %F AIF_1983__33_1_131_0
Ouchi, Sunao. Characteristic Cauchy problems and solutions of formal power series. Annales de l'Institut Fourier, Tome 33 (1983) no. 1, pp. 131-176. doi : 10.5802/aif.907. https://aif.centre-mersenne.org/articles/10.5802/aif.907/
[1] The singularity of solutions of Cauchy problem, Publ. Res. Inst. Math. Sci., 5 (1969), 21-40. | MR | Zbl
,[2] Problème analytique de Cauchy à caractéristiques multiples dont les données de Cauchy ont des singularités polaires, C.R.A.S., Paris, Ser. A, 276 (1973), 1681-1684. | MR | Zbl
,[3] Systèmes d'équations aux dérivées partielles à caractéristiques multiples ; Problème de Cauchy ramifié ; hyperbolicité partielle, J. Math. Pure Appl., 55 (1971), 297-352. | MR | Zbl
, et ,[4] Irregularity of characteristic elements and construction of null solutions, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 23 (1976), 297-342. | MR | Zbl
,[5] On kowalewskian systems, Russian Math. Survey, 29, vol. 2 (1974), 223-235. | MR | Zbl
,[6] Asymptotic behaviour of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 1-36. | MR | Zbl
,[7] An integral representation of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 37-85. | MR | Zbl
,[8] Characteristic Cauchy problems and solutions of formal power series, Proc. Japan Acad., vol. 56 (1980), 372-375. | MR | Zbl
,[9] On the Cauchy problem in Cn with singular data, Mathematiche, 30 (1975), 339-362. | MR | Zbl
,[10] Problème de Cauchy analytique à données méromorphes, J. Math. Pure Appl., 51 (1972), 375-397. | MR | Zbl
,[11] Asymptotic expansions for ordinary differential equations, Interscience Publishers, 1965. | MR | Zbl
,Cité par Sources :