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CHARACTERISTIC CAUCHY PROBLEMS
AND SOLUTIONS OF FORMAL POWER SERIES
by Sunao OUCHI

1. Introduction and preliminaries.

Let C"*' be the (n + 1)-dimensional complex space. For
the point in C™*' we make use of the notation

2= (29,2154, 2,) = (24,2").
)
a—z,' 9, = (6,0, a,l,..., a,n) = (a,o, ;1)
and (3,)" = (3, (3,)" = (3, (3,)™,..., (3, )™, where multi-
index o= (o, 0,...,0,) = (a, a') "is an (n + 1)-tuple of non-
negative integers. For multi-index «, |al=oqy ta, +...+ 0, .
We denote the dual variable by & = (§,,&,,..., &,) = (%, £'). For
a linear partial differential operator a(z,d,) we denote by a(z, &)
its total symbol and by P.S.(a) (z, &) its principal symbol. We
denote by ©O(£2) the totality of holomorphic functions in a domain
. For a real number a, [a] means the integral part of a. For
two natural numbers a, b, (a, b) means the greatest common diviser.

We employ the notation a,'_ =

Now let us consider Cauchy problem

L(z,d,) u(z) = {(a,o)" —A(z,9,)} u(z) = f(2),

(1.1)
@,) u©,2) =a(z");, 0<i<k-1,

where

k-1
A(zy az) = Z Ai(zg az’) (azo)i (1'2)
i=0
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and its order is m and its coefficients and f(z) belong to ©(2)
for a neighbourhood £ of z =0 and ﬁi(z') O0O<i<k-1) are
holomorphic in ' = QN {zy = 0}. We can easily find out a formal
solution of the form

i(z) = X 1,(2") (zo)"n! , (1.3)
n=0

where u,(z') (n=>k) are successively and uniquely determined
from (1.1). It follows from well-.known Cauchy-Kovalevskaja theorem
that whenever m < k, u(z) converges and is a unique holomorphic
solution of (1.1). When m > k, u(z) does not always converge, that

is, generally u(z) is a divergent series (see Mizohata [5]).
The purpose of this paper is to give an analytical interpretation of
u(z), when m > k. One of the results in this paper is the following:

Under some condition on L(z, d,), there is a function wug(z)
holomorphic in a neighbourhood U of z =0 except on {z, = 0}
such that

L(z,9,) ug(z) = f(z) in U — {z, =0} (1.4)

and it has the asymptotic expansion
ug(z) ~ i(z) = 2 ,(2") (zo)"/n! , (1.5)

n=0

as z,— 0 inthesector S = {z,; a <arg z, <b}, where (b —a)
is less than a constant determined by L(z,9d,).

Some of results in this paper are announced in Ouchi [8].

Now let us give some definitions and lemmas to state the results
in detail. The proofs of these lemmas will be given in § 2. We write
A(z,0,) in the form different from (1.2):

m i
Az,8,)= 2 X a0(z,3,) (3, )", (1.6)

i=0 Q:;i

where g, o(z,¢') is homogeneousin &' with degree ¢, a; (25 E¥0
and if g, ,(z,¢') =0 forall £, weput 5, = + . We have

A(z,8,)= X a,,(z,8,). (1.7)

(h,%),h- Q=i

Let us define some quantities associated with L(z,9,). To do
so let us expand A,(z, ¢) and a; o(z, ¢') with respect to Zy,
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Az, EY= 2 A, E) (z0), (1.8)
j=0
4,0z, 8)= X a0,z E) (z0) . (1.9)
j=0
From (1.7) we have
Ay EY = R a0 E). (1.10)
(h,R) ,h~2={

Set M;; = ord A, ,(z',9,) and

d; =min {(& +7); a5,(z", ) £0} (>k),
d,=0.
If s;,=+ 0, weput d; = + o, Letusdefine

(1.11)

[3=max{l,(M,.,,+j)/(k—i+i); 0<i<k—1,j=20}.(1.12)
We have

LEmMMma 1.1. —
@ If 4,,0,2', £V £ 0, then d; =s,.

(ii)) L(z, 9,) is non-characteristic with respect to the surface
{zo = 0} ifandonlyif B=1.

In the following of this paper we.assume that.the surface {z, = 0}
is characteristic, that is, m > k. Let us define other quantities
0, 0<i<®+1), which we call characteristic indices. Consider
the set of points P={P, = (j,d)); k<j<m}. Let P be the
convex envelope of the set P. The lower convex part of the boundary
of P consists of segments X, (1 <i <Q). We denote by A the
set of extremal points (vertices) of Z, (1 <i< ). Put

A= {(j,,d,i): i=0,1,...,2},
where m =j, > j, > ...> j, = k (seefig. 1.1).

DEFINITION 1.2. — The i-th characteristic index o; of L(z,9,)
is defined by

0y =t o ;
0; = (d]i_l —dii)/(j"'l —j), 1si<{y, (1.13)
Ogey = 1.
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(jo > djo) = (m ’ dm)

Fig. 1.1.
m
0,(1 < i < R) is the slope of the segment Z,. We put
Yo = + oo, g
Vi = Oguy-il(Ogey— 1), 1<i<Q, (1.14)
Yoer = 1.

Remark 1.3. — o, is a generalization of the irregularity of
characteristic elements in Komatsu [4]. Characteristic indices can
be more generally defined. They will be investigated elsewhere.

We have

LEMMA 14, —
() teo=0y>0,>...200,=1,
() +oo=9%>7,>...27%,y=1,
(i) =1, .
Later we shall deal with functions of several complex variables
which have an asymptotic expansion with respect to one of them.
Let S= S(a,b) = {z,€C'; a<argz, < b} be a sectorial domain

in C' and U= {z€C™!; |z51<ry, I2;/<r, 1 <i<n} bea
domainin C**'. Put U'= {Z'€C"; |2,/ <r} and

Ug = (SN (12,1 <rg)} x U'.
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DeFINITION 1.5. — Let f(z) be holomorphic in Ug. A formal

series Y, a,(z) (zo)'/n!, where a,(z) (n=0,1,...) are holo-
n=0
morphic in U, is said to represent f(z) asymptotically in Ug, if
forany N N
o™ | f(2) = 2L a,(2) (z,)"/n! (1.15)
n=0

tends to zero uniformly on any compact set in U, as z, tends to
zeroin S.

The asymptotic relationship of the definition is usually written
in the form -

f2) ~ 2 a,(2) (zo)"/n!, as z,—> 0 in Ug. (1.16)

n=0

By expanding a,(z) with respect to z,, we have

f(z) ~ i b,(z") (zy)"/n! as z;—> 0 in Ug. (1.17)

n=0
In the following of this paper we often use expansions such as (1.16).
For asymptotic series of functions we refer to Wasow [11]. We only
give a proposition concerning differentiation of asymptotic series.

PROPOSITION 1.6. — Suppose that f(z) is holomorphic in Ug
and possesses an asymptotic expansion of the form (1.17). Then
we have -

B, fz) ~ X (3,)% b,(2") (zo)*/n! , as zo —> 0 in Ug(l1.18)

n=0

and for any proper subsector S, of S

Q) f(2) ~ X ()% bpray(2) (2o)'/n!, as 2o —> 0 in Ug,.
n=0 (119)
By 5(.{2 —{zo = 0}) we denote the set of holomorphic func-
tions on the universal covering space of £ — {z, = 0}. Later we shall
use functions of (n + 2)-variables (z,A). By ?5(9 x (N> A)) we
denote the set of holomorphic functions of (z,A) on the universal
covering space of Q2 x (|IA|> A). By C(d,0) or simpiy C() we
denote a path in A-space defined as follows: Set

Cd,0)={A=rexp(i(—m+0)); d<r<oo}
Co%d,0)={A=dexp(ip); —m+0<p<m+ 0} (1.20)
2 ctd,0)={A=rexp(i(m+ 0));d <r <eo},
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C@l)=C(d,0)uC’(d,uCt(d,0) is a path which starts at
oo exp(i(—m +0)), goes to d exp(i(—7+0)) on C~(d,0), goes
around the origin once on C%d,0) and ends to ooexp(i(m + 0))
on C*(d,0).

Now let us state some of results,

THEOREM 1.7. — Let S = S(a, b) bea sector with
(b—a)<ml(ogg—1)=m(y, = 1)
and 0, be a number with (m+b—a)2 <0, <(my,)2,

v, = 0o/(0g — 1). Then there are a neighbourhood U of z =10

and functions N
uy 5(2), 8,5(2) €U - {z, = 0})

such that
L(z,0,) uy5(z) = f(2) + g,5(2),
ups(z) ~u(z), as zy — 0 in Ug, (1.21)

8,s(z)~0, as zy — 0 in Ug.

Here gt’s(z) is represented in the form, if largzy, + 0| <m/2,

g5 = [ expQzo) Gyg(z,N) dh, (1.22)
c)
where G, g(z , \) € 8(U x (IX|> 1)) and satisfies
sup (G, (2, M) < A exp(e’ [A["™) (1.23)

andif |arg\ + (a +b)/2|1<6,,
sup 1Gys(z, M) < A exp(—c Ny, (1.24)

A, ¢' and c are positive constants.

Remark 1.8. — It follows from well’known Borel-Ritt theorem
for asymptotic series that there are u,s(z) and g, s(z) satisfying
(1.21) for arbitrary S, but it is important in Theorem 1.7 that g, ¢(z)
is represented in the form (1.22) with the estimates (1.23) and (1.24)

Now let us give an exact solution. To cancel g, 5(z), we put
a sufficient condition on L(z, d,):

Condition L (i, s)EP (i>k), and for (i,d,)EA (necessa-
fily d;=s,) '
0,¢)%0. (1.25)

II q,
@.spea ™7
i>k



CHARACTERISTIC CAUCHY PROBLEMS 137

THEOREM 1.9. — Suppose that 1.(z,9,) satisfies condition I
Let S= S(a,b) be a sector with (b—a) <m/(o, —1). Then
there is a function us(z)EO(U —{z, = 0}) in a neighbourhood
U of z = 0 such that

L(z,9,) ug(2) = f(z2),

ug(z) ~a(z), as z, — 0 in Ug. (1.26)

We give an application of Theorem 1.9. Let us regard the operator
L(z,9d,) as an operator L(x,d,) with analytic coefficients on a
domain Qp = QN {Imz=0} in R"™! by the restriction. We
denote by x the point in R"*!. We consider a characteristic Cauchy
problemin Qg ,

L(x, 9,) u(x) = f(x),
(3, u(0,x") = u(x"), 0<i<k—1.

In general (1.27) is not solvable. But we have

E (1.27)

THEOREM 1.10. - Suppose that L(x,9d,) satisfies Condition I
and f(x) and u,-(x') (0 <i<k—1) are analytic in x and x' res-
pectively in a neighbourhood of the origin. Then Cauchy problem
(1.27) has a solution wu(x) in a neighbourhood V of x =0,
which is C” in V and analytic in V— {x, = 0}. Moreover u(x)
has estimates

1(34)" ()% u(x)| < AC! (o)™ (@'!) for x €V, (1.28)

where A and C are independent of .

In the following sections we shall use operators with a parameter
X in order to prove Theorem 1.7 and 1.9. Let us summerize what
we shall need. Let M(\ ; z, 9,) be an operator of the form

m
MQ\;z,9,)= Y N M(z,9d,), M, (z,9,)#¥0, (1.29)

r=0
where M,(z,0,) is a linear partial differential operator of order
t, defined in 2. Let us define quantities v, (0<i <my + 1)

r
associated with M(\ ; z, 9,). Consider the set of points

PQA) ={(r,t,); 0<r < m}.
Let P(\) be the convex envelope of the set P(\). We assume that

the upper convex part of the boundary of f’()\) consists of segments
M Ad<i < m') (see fig. 1.2).
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Z,M)
(r[ b tri) \\
MW

(rl > trl)
Z; ()

) ) | ) 1 L} Ll

r; m

Fig. 1.2

We denote by A'(X) the set of vertices of segments Z,\) (1 <i<m).
Set A'(N) = {(r,, t,i); i=0,1,...,m'}, where m=ry >r, > r,.
Put v, = + o and

v; = max {— (t’i—l - t,i)/(rl_l —r), 1}. (1.30)
We may assume that
V202DV > =00, O0smy<m.
We set AQA) = {(r;, t,i); 0<i<my}.

DeFINITION 1.11. — »; (0<i < m, + 1) defined by (1.30) is
said to be the i-th \-characteristic index of M(\;z,0,).

Lemma 1.12. — Let (r,t,) = (r;, t,i)EA()\). Then if j>r,

4 —t)IG - <—v, (1.31)

andif j<r
(4 =G —nN=—v,, . (1.32)

We shall use Lemma 1.12 to show next theorem. Now let us
consider an equation for M(A;z,9,),

M ;z,90,) V(z,\) = G(z,]N), (1.33)
where G(z,k)eg(ﬂx(l)\l>A)). Set MQ\) = sgg 1G(z,N)].
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We shall not construct an exact solution, but construct a function
V(z,\) which satisfies (1.33) asymptotically as A — oo in some
sector.

Let v, =p,/q;, p;»4;EN, (p;,q,) = 1.

THEOREM 1.13 — Suppose that P.S. M,) (0,% #0 and
0<6 <mv,, /2. Then there are a function

V(r;2,0) € 8, x (IN[>A)), 22 Q,,

with a parameter T > 0 and a constant 7> 0 dependent on 6 such
that for 0<7<T7

M(\;z,9,) V(r;z,\) = G(z,\) + exp(-ﬂ\llv’“) H(r;z,N), (1.34)

sup [V(r;2,0)] < AMOY exp(c' |A]"1*y, (1.35)
Ze 0
and if Iarg7\l<é,
sup [V(r;z,0)| < AMQ\) exp(c|z| Iy (1.36)
z 0

Here H(t;z,\) € O(, x (IN| > A)) and satisfies
AMQ\) exp(ri+1/@ni=D g |\ Pty g > 1
AMQ) (1 + IXDY, g4y = 1. (1.37)

Constants b, ¢', ¢, A and N are independent of 7.

H(r;z,0)| <

In this paper we only consider an operator L(\;z, d,) induced
from L(z,9,),

k
L(z,d,) expQ\z,) V(z,\) = expAzy) 2. N'L.(z,3,) V(z, N)

r=0
= exp(Azy) LA ;2,9,) V(z,N). (1.38)
In view of (1.6), we obtain

(i —p)! .
: 9,) = —_ ,0,) (9, )-P-r  (1.39
Ralie (E) i-p-n'r! %p(2,0,) (By) (-39
i-p>r

We can also define AQA) = A(A,L) and v, = v(L) for L(\;z,9,)
as above. Put A(A\,L) = {(r,, t,i); 0<i<k,}. Now we have

LemMa 1.14. — Suppose that 1(z,d,) satisfies Condition I
Then k, = R, where L is that in Definition 1.2,
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A\ L,L) = {(i - §i» 51); @i, S‘) €A}, PS. (Li—s,-) (z,8) = ai,si(z s 5')
and vo,, (L) =794 (F0;/(0;-1) (1 <i<Q).

Let us state the contents of the following sections. In § 2 we
shall give proofs of lemmas in § 1. In § 3 we shall show how to
construct the function uy g(z) in Theorem 17. In § 4 we shall
investigate equations with a parameter A and construct solutions
with singularities on {z, = 0} for L(z,9,). In § 5 by making
use of results obtained, we shall show how to construct ug(z) in
Theorem 1.9. In § 6 we shall give estimates of functions constructed
in § 3 and § 4. In § 7 we shall study functions defined by integrals.
Asymptotic expansions of functions will be investigated. By applying
them, we shall complete the proofs of theorems.

2. Proofs of lemmasin § 1.

In § 2 we shall prove Lemma 1.1,1.4,1.12and 1.14.,

Proofof Lemma 1.1. —

(i) From the condition a,-'_vi(O , 2 ) = ai.si,o(z', EY#E0 we
have d; = s, .

(ii) =1 holds if and only if M;;+j<k—i+j. Hence
M,.', <k —i. This implies {z, = 0} is non-characteristic.

Proof of Lemma 1.4. —

(i) follows from lower convexity of P. (ii) is obvious. Let us
show (iii). First we show B <y,. Suppose that M,-OJ0 =2, . By
putting h, = i, + &, , we have

(M,o',o + i) (k—iy+j)) =R +ig)/ Ry + jo — by + k).(2.1)
If hy<k, we have (& +jo)/(® +jo, —ho+ k) <1<7y,. If
hy > k, then from (1.10) we have d,,0 <&, +j,. Hence we obtain
®, +ig)/(hyg — k) = d,,o/(h0 —k)=o0, =v,/(y; —1). So in view
of (2.1), we get (M,o‘,-o + jo)/(k —iy + j,) <v,. This implies
B<n,.

Next we show @ =v,. Let £,,j, and i, be integerssuch that
0,,2 E)EO, @ 0,(z,§)=0 for £+j<g +j, and
dy [(iy — k) = (& + j)/(i, —k) = 0y. Since
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M;l_gl’il = max {Q;a,,,,l,,l(z’,e’) FO0,h=0+i —}=>2,,
we have
B> (Mil—Ql,[l + ’1)/(k - il + 9’1 + ]1)
= (21 + ]1)/(k _il + Ql + ]1) =%

This completes the proof.

Proof of Lemma 1.12. — (1.31) and (1.32) follow from upper
convexity of P(A).

Proofof Lemma 1.14. — Put

A={(,s); k<i<m, 5; #+}U(0,0)U(m,m).

Let A be the convex envelop of A. In view of Lemma 1.1 the set
of extremal points of A consists of A defined for L(z, 3,), (0,0)
and (m,m). So from geometrical consideration of A and (1.39)
we have AQ\,L) = {(i —s;,s,); (i,5;) €A} and

PS. (L) (2,8 = a4(z, £)
(see fig. 2.1.). Let A = {(j;, s/i); 0<i<Q} and
AA,L) = {(r;, t,); 0<i<Q}.

(m,m)

(m,s,,)

>»

(i-p=nnNA

' r i
/; k m
Fig. 2.1.
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We have r, = j, _, — 8, , and £, =s; . Thuswe get

2
Vi T (s’Q+1—i - s/sz-i)/(]‘z—i = Stgy THeer-i TS, )

= 0gey i/ (Ogey; — 1) = ;.

3. Construction of solutions I.

In § 3 we construct the function u,¢(z) in Theorem 1.7.
We only show construction of u, g(z). Estimates of functions
appearing in construction and asymptotic behaviour of them will
be investigated in the later sections. In the sequel we denote u, 5(z)
by u,(z) and assume #,(z')=0 (0<i<k-1) and

S={z,€C'; Jarg zp| < w}, w <m(y, — 1)/2.

We seek for uy(z) in the form

1
uy(z) = mi Yo exp(Az,) W(z,\) d\, 3.1)
where

)
W(z,\) = \0-P)p f ' exp(— AYPE) w(z,¥) dt. (3.2)
0

Here we recall that v, = 0,/(6, — 1) =p/q, § =(q¢ —1)/p, p and
q are natural numbers with (p,q) =1 and 7 is a positive constant,
which will be determined later. The path C(0) is defined in § 1.

Now let us give an equation which w(z,{) satisfies. Our cal-
culations are formal, but by obtaining estimates we shall be able to
justify them. First we introduce some notions. Let v({) be holo-
morphicin {{ €C!; |¢| < R}. Define

@y v = (5

@ v®) = [* @) o) at, s<0. )

dys
2) v®. 520, |
3.3)

DEFINITION 3.1. — A linear operator H(z,¢,0,,0,) is said to
be an integro-differential operator on 2 x {|{| < R}; (0 <R < o),
if it has the form
H(z,$,9,,8) = & H(z,8,9,) By, (3.4
1713
where Hj(z ,$,0;,) (171 <) are linear partial differential operators
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in S with coefficients holomorphic in 2 x {I$| < R}. If coeffi-
cients of H/(z ,§,9,) (1j1 <7J) are polynomials of §, H(z,§,9,,d;)
is said to be an integro-differential operator of polynomial type.

DEFINITION 3.2. — Let v(z,\,$) be holomorphic in
Qx {XI > A} x{l¢I <R}.

(i) A function h(z,\,§) is said to belong to Err. (v), if
h(z,N,$) hasan expression

N
h(z,\, 0= X X"HYz2,8,9,,0) v(z,A,0), (3.5)

n=1
where H"(z,§,0,,98,) (n=1,2,...,N) are integro-differential
operators of polynomial typeand h, (n =1,2,...,N) are constants.

(i) A function f(z,\) issaid to belong to Emr (v, cA\®) (@ =2 0),
if there is a function h(z,X\,$) € Err (v) such that

N =hE D
whereif a=0, |c|<R andif a> 0, R=+ o,

We need some properties of functions defined by integrals. Put
AB
V(z,\) = Nile=D f’ exp(— AP v(z,0) dt,  (3.6)
1]

where v(z,¢) is holomorphic in 2 x {|{| <R} and if §>0,
R=+00, if §=0, 0<7<R. Let us recall § =(q —1)/p.
We have

LemMa 3.3, —
{(—/p—1) @)? + (1/p) (8,) "8} v(z,8)
= §/p) 3P u(z, 8. (BT
Proof. — By expanding v(z,{) with respect to ¢, we have

only to show this lemma for functions ¢ (m =0,1,...). We
have

—(I/p=1) @)7P¢™ + (1p) (3,)~P*1gm!
=—U/p—1)¢™P/(m +p)...(m+1)
+¢™Plp(m +p) (m+p—1)...(m +2)
=™ /p(m+p—1)...(m+1)=(§/p) (3)P*¢™.
Hence we get
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PrROPOSITION 3.4. —
() Let (3, Y u(z, 0) =0 for 0OSh<p-1. Then

AV(z,\) = \@/p=1) f " exp(— AIIog) (33)° v(z, }) dt

+ exp(— TAYP) V,(z ). (3.8)
(i) 5
av TA
= 0 = MNP [T exp - \PE) (§/p) (3P w(z, ) dt

+ exp(— TAYP) V,(z, 7). (3.9
Here V,(z,)\), V,(z,\) €Ermr (v, 7A\%).
Proof. — (i) follows from integration by parts (ii) follows from
Lemma 3.3.

Now let us give an equation for w(z,{). Let J be an integer
such that > max {M;; +)/(k—i+/);0<i<k—1, j=]}.
We fix J. We have

J—-1
Az BV = X A E) (zg) + A (2,8 (2). (3.10)
j=0

In the following we use (3. 10) instead of (1.8). So we denote
A2 E) 0<i<I—1) by A, (z,§)

and put M,; =ord A, ,(z, z,). Recall that the initial values
#;,(z") (0<i <k — 1) are assumed to be zero.

By Leibniz formula we get
(3,,)" exp(Azo) W(z,\)

h
= exp(hzo) ,2_:0 (h —5)!s!

: 7\‘(3,0)"“" W(z,N). (3.11)

Hence we obtain '

k!
L(z, 3,) (exp(\z,) W(z,N)) = exp(Az,) 2 T M@, )
§=0 te

i

k-1 J £
-¥ % a,e.) (zo)’g Y o NETT I WEL
i=0 j=0

a0 (G —29!s!

= exp(Az,) L(A;z,09,) W(z,N). (3.12)
Thus, from (3.1) and (3.12), we have

L(z,0,) uy(z) = exp(}\zo) L(A;z,0,) W(z,\) d\.(3.13)

21r
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By integration by parts with respect to A, we have

L(z,9,) uy(z) = =~ f exp(\zo) L\, 3, , z, 9,) W(z,\) d,
(3.14)
where .
L)\,a yé = )\S az k-s
( A2 Z:, S)' ( o) (3.15)
’ hand i < i!__ 8 i-s
ezo 3 Z: Auy (2,020 (7 00) $ Z‘o (i —9)!s! N0,

Since we assume that W(z,A) has the form (3.2), we can apply
Proposition 3.4. Thus we have

L(A,9,,z,90,) W(z,)N) X8
= \/p- 1)/' exp(— N"%) £(z,9,,3,) w(z,?) dt
+ exp(— TAYP) V,(z,N), (3.16)
where X k!
20000 = B Gemgrst G OO (3.17)
:‘20'3 IFWIEED (:(ag)lﬂp/py{

-~

i!
seo (—9)!s!

(3,07 (3,))'* %

and V,(z,\) €Err (w, 7).

On the other hand
1 8
f@) =5 [ expQzo) APt an [T exp(~AYP) £(z) dF
2mi Yeeo) 0 3

1
+ — Az, — TAYP dx.
i e o, POz = 7RI S

Consequently we obtain an equation for w(z, ¢),

(z,0,,0;) w(z,§) = f(z2). (3.19)
Hence, if w(z,{) satisfies (3.19), we shall have
L(z, 9,) ug(z) = f(2) + g,(2), (3.20)
where
8.2 = [ o SP(Az0) Gy(z,1) ) (3.21)

and G,(z,7) exp(7A¥P) €E Err (w, TA%).
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Let us construct a solution w(z,¢) of (3.19) in the form

w(z, =2 w,(2)"°T(np +1). (322)

n=k

Substituting (3.22) into (3.19), we have

= ¥ k! _
£z, 0,00 w0 = 8 (L G g1s7 @™ wans@

3 i n! A K] 9. )i-s
z:o o<1z<x i—-9'!'s! (n—n! 1 (2532) ( ’o) w"+-v~i(z))
0<S<i ;'W/l"(nP + 1) = 6n,0f(z) , (323)

where 8,,, is Kronecker’s delta. Since w,(z) =0 for n <k, we
have

k=t k!
wn+k(z) == = m (azo)k-swni-s(Z)
k—1 n! il j
¥ i=0 o<§<x (n—j) (1—-95)!'s! Ay(z,9,) (320)’ Wnss-(2)
o +8,0f(z). (3.24)

Thus we can determine w,(z) successively from (3.24).

ProPOSITION 3.5. — There are constants A and C and a
neighbourhood 2, of z = 0 such that for z €,

lw,(2)| < AC"T'(nB+ 1), B=1v, =plg = 0y/(0, — 1). (3.25)

This proposition will be proved in § 6 with other estimates.
In view of Proposition 3.5, we can show convergence of w(z,¢).

PROPOSITION 3.6. —

@A) If q>1, then w(z,$) is an entire function of ¢ and
there are constants A and b such that

lw(z,8)| <A exp(b|§|99=D) for zEQ,. (3.26)

@) If q=1, then w(z,$) is a holomorphic function of ¢
in {§; 181 <Ry} forsome R, .

Proof. — Recall that y, =8 =p/g>1. It follows form Pro-
position 3.5 that for z € Q, there is a constant B such that

lw,(z) £"°/T(np + 1)| < AC"I'((np/q) + 1) [§1"°/T'(np + 1)
<ABIEN"/T(np(1 - q71) +1).
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Hence if ¢ > 1, we have for a constant b

lw(z,HI<A Z BN /C(np(1 —q~") + 1)

n=0
< Aexp(b|§|9@-D), (3.27)
If ¢g=1, by putting R, = (2B)"!, we can show that w(z,¢)
convergeson {{;|{| < Ry} and is holomorphic and bounded.

Concerning V,(z,\) = exp(7 |\|/F) G,(z,\) (see (3.21)) we
have

PrROPOSITION 3.7. — There are constants A, C and h such that
for z€Qy and IN|21,ifqg>1,
(V,(z, )< A + |A])* exp(bT@-D |\ |F) (3.28)
andif q =1
IVi(z, NI < AU + A, (3.29)

where b is the same constant in Proposition 3.6.

Proof. — It follows from Proposition 3.6 that there are constants
N(s) and C, . such that

[ Cay (1 + 18DV exp(b | 1/@-D) (g > 1),
13,)* (3,)* w(z, )| < (3.30)

Ca,s (@=1,181<
in a neighbourhood , of z = 0. Noting that
Vi(z,\) €Err (w, 7A%)
and if q > 1, exp(BI§|YOV)|_ s = exp(b7¥@=V |\|VF), we
have (3.28) and (3.29).

From these propositions, wu,(z) is well-defigpd. By varying 6
in the path C(6), we can show that u,(z) € 0(2, — {z, = 0}).
Thus we have

a,s

PROPOSITION 3.8. — uy(z) € O(2 — {2, = 0}) in a neighbour-
hood 2, of z = 0 and satisfies

L(z,0,) uy(2) = f(z) + g,(2), (3.31)
where

g,(2) = fc 0 TPAZ =NV, AN, (332)
and V,(z,\) satisfies (3.28) or(3.29).
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In § 7 we shall show that uy(z) ~u(z) and g,(z) ~0, as
2o~ 0 in S = S(a,b) after determination of 7.

4. Equations with a parameter A.

In order to get Theorem 1.9 we have to cancel g,(z) in Theorem
1.7. In other words we have to find out a function u(z) so as to
satisfy L(z,9,) u(z) = g,(z) and u(z) ~0 as z, — O in some
sector. As mentioned in § 1, to do so we investigate equations with
a parameter A. In § 4 we construct V(z,\) in Theorem 1.13.

m
Now let MQ;z,9,) = 2 A"M,(z,0,) be an operator

r=0
with a parameter A. Let us recall AQA), »,(0<i < my) and
t, = ord M,(z,9,) (see § 1). Assume that

P.S.(M,) (0,¢) #0 forsome (r,t,)EAQ). 4.1)

So there exists a segment Z,,,(A) with (r,t,) = (r,,t,i). Now
consider an equation
MQ\;z,d,) V(z,\) = G(z,N\) 4.2)

under the assumption (4.1). Let us construct V(z ,A) in the form

V(z,\)=A" 2, v,(z,\) so as to formally satisfy (4.2). We may

n=0 “ “
assume that P.S.M,(0,§) # 0, £ =(0,0,...,0,1) and z" denotes
(295 2y5.++»2,_1). Letusdefine v,(z,A) asfollows:

M,(2,3,) v, + 2 N~ "My(z,3,)v, = G(z,N),
I>r (4.3),
O, ) v,(z",0) = k,(z"), 0<h <t -1,

M,(z,3,)v, + 2 N"My(z,3,)v, + X N7"M(z,8,)v,_,,,=0

j>r j<r (43)n
(a,n)" v,(2",00=0, 0<h<t -1,

where k,(z") (0 <h <t, —1) are holomorphic in a neighbourhood
of z'"= 0. We seek for v,(z,\) of the form

v,(z, 0= X% v,,(z,)N. (4.4)

§S=-—-n
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So substituting (4.4) into (4.3), we determine v,s(z,N) in the
following way:

M,(z ’ az)vn,s + 2 M/(z ’ az)vn,s—/+r +i§ Mi(z’ az) Un—r+j,s—j+r
j>r
T =8,08,0G(z,N),
(a,n)" v,:(2",0)=38, 8,0 ky(2"), 0<h <t —1. 4.5)
Equation (4.5) has a unique solution v, ¢(z,A) holomorphic in z

in a neighbourhood 2, of z = 0, which is independent of n
and s in view of Cauchy-Kovalevskaja theorem.

Let us estimate v, .(z,\). Put MQA) = sup |G(z,N\)|. We
: €Q
have, by using A-characteristic indices v, and v, ﬂz,

PrROPOSITION 4.1. — There are constants A, B and C and a
neighbourhood S, of z =0 such that for z€Q,, if i=1,
[v,,s(z, )| < AMQ\) B*** C" |z NG (nv,,, + D/T(n + ) v, +1),

(4.6)
where N(n,s) = max {[(y; —v;,,)n +v,;5],0} and if i=0,
v,s(z,N)=0, s#*—n,

(4.7)
19, _n(z, )1 < AMQ\) C"T'(np, + 1).

The proof of Proposition 4.1 will be given in § 6. It follows

immediately from Proposition 4.1 that v,(z,A) = Z v, (2, )N
converges. Put §=—n

00

0,(z,N = Y v,z N. (4.8)
n=max(0,—s)

We have

PROPOSITION 4.2. — 0,(z,\) converges absolutely and uniformly
in z€Q, and for i 2 1 estimates

19,(z,N)| < A MQ) B |z|l*)/T'(sp, +1), s=0 (4.9)
and
155(z, M) < AMQ)BE'T(Is|yy, +1), s<0 (4.10)

hold for some constants A, and B, .
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Proof. — Let s 2 0. We have for z€ Q,,

s

19,402, 01 < AMOY B [z11%1f 3 (BCy 12111+

n=0 n=0

X 1“(m;,+1 + D/T((n+s)v, + 1)§ < AMQ\) B! |z|*" D (sy, + 1)

w§ S en 1 oy, — ) + 1)
n=0 < A,MQ\) B! |z|"”" I'(sw,+ 1)
let s=—h < 0. We have

0

Y v, ,(z, M) < AMQ) B} i CIT (., + )T ((n — )y, + 1)
n=h

n=-—s

< AMQ)BIT(Is|yy, +1).
Thus a formal sum

V(z,\) = k"( Z 9,(z,N )\') (4.11)
§=—bo
formally satisfies equation (4.2). By making use of V(z,\), we
can prove Theorem 1.13 in § 1. First let us introduce auxiliary func-
tions f;(¢) (—o°<j <o) used in Hamada [1], Wagschal [10] and
others:

@)= TAid Y m, j<—1,
fo(§) =log §/2mi (4.12)
@)= Qogg —(1+1/2+1/3+ ...+ 1/))/QmiT( +1)), j =1

Let us remark an important relation df,,,l(g')/dg' =f;(§). Let us

PUt Vl+l = Dier/Qiers Pivrs Dsr ENs (Piay» 414,) =1 and put
8,41 = (¢;4;, — D/p;4, - In the following of this section we denote
Di+1> 934+, and §,,, simplyby p, q and & respectively.

Define
h(z,\, 0 =2 _,z, 0P )(s- Dp)!, (4.13)
s=1
vz, N0 =X 0,2, N frg_1), ) ‘ (4.14)
and =
VHz, ) = Y 9z, )N, (4.15)
$=0

We have
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LeMMA 4.3, — There exist constants A, k and {' such that if
q9>1, .
lh(z, X\, 8)| < AMQ\) exp(k |§19@-1) (4.16)
and
[v™(z,N, )| < AMQ) (1 + [log §[) exp(k [§¥@-D),  (4.17)

if =1, for tE{LEC; |§I<{)

|h(z , N, 0| < AMN) (4.18)
and
lv7(z, A, I < AMQ) (1 + |log¢l). (4.19)

Proof. — In view of (4.10), we have

s

15_,(z, NI 1E16=DP/T((s — 1)p + 1) < Ale§ 3 BS [g1e-p

8=1

x T(s(p/g) + 1)/T((s = Dp + 1)§

@
]

1

< A,MQV i T B [£1¢-DP D((sp(q — Dg + 1))}

s=1
Hence, if q>1, we have (4.16) and if ¢4 =1, by putting
¢ = (2B,)" ' we have (4.18). By the similar way we. have (4.17)
and (4.19).

LeMMA 4.4. — V*(z,\) converges and there are constants A
and c such that for z € Q,

[V*(z, )| < AMQ\) exp(c [z] I, (4.20)

Proof — In view of (4.9), we have

§=0

Y 15,z N1 INE < AMQ) X B 21" Ny, + 1)
£=0
< AMQ\) exp(e z| INY™).

Now let us define another path —é(n). —C_J(n) is a path which
starts at { = n and goesaround { = 0 onceon [{| = |n].

Lemma 4.5, —
(i) The following equality holds:

[ exp(-NP) v=(z, N, 80 dt = [ exp(- NP h(z,\, 8 dt .
Cm o 4.21)
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(ii) Let |argA| < 5, é <er,+1/2. Then there are positive
constants 7 and K dependent on 0 such thatif T=>1> 0,

sup
2€80

Proof. —

(i) By the relation ‘/; [ ) ds = fﬂ ®’/iYyds for j=0,
we have (4.21). €™ °

@) If g=1, then § =0 and (ii) is clear. Let ¢ > 1 and
put &=\, 0<¢<1. Since |arg)A|<§ <mv,,[2,
there is a ¢ > 0 such that Re AYP¢ < ¢7c |\|9P . Therefore
from lemma 4.3, we have

1')\8
S expn nen 0 (4.23)
< AMQY rmsfo’ exp((= trc + (¢+9)U@-Vg) |\|9P) df .

8
L™ exp(= NP8 h(z A, 0) d§| <KMQ) A", (4.22)

0

There is a 7> 0 such that (t7¢)/2 = (¢7)9@- Dk for 0<7<7.
Thus we have,if 727> 0,

™98
| [ expnPg) bz,
< AMQV) 78 j(;l exp(— tTc |N|9P[2) dt < KM(\) |A|-P

Now let us prove Theorem 1.13. Put

V(r;z, ) =X7" X 3,(z, )N
$=0 (4.24)
+ A==t [ exp(— NPE) v=(z, N, §) dE,
T(n\8)
where >0 and if g =1, 7 <¢. 7 will be determined later. We
have

V(r;z,\) = \lP=r=1 Eo jéms)exp(— AP D (2,N) f_(ga1)p (§) A
-1

+Ap-r=t 3 o EXP(= APE) 5,(2,0) - par)p (§) d (4.25)

s=—o C(TA?)
By operating M(A;z,9d,) to V(r;z,\N), we have, by integrations
by parts and Lemma 4.5 (i),
MQA;z,0,) V(r;z, ) =1, +1,, (4.26)
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where
bad m
I, = Alp-r-1 2 /; s exp(— \/P¢) Z M,-(z,az) 5,(z,\)
s=0 ~CON) j=a
Xf_osep+)p(§) § A8 (4.27)
and

I, = \p-r-1 _ﬁ f_ exp(— xllﬂg)g ‘Z‘, M;(z,3,) 3,(z,N)

seme Y C(rA0) j=o0
X f(sajrnyp )t A8 + exp(—TA%) H(r5z,N).  (4.28)

From (4.13) and (4.14), H(7;z,\) € Err (h, 7A%). Hence we obtain

[, +1,=A/pP-r-1 i ﬂ

S Y C(AS
X f_(ﬁ,ﬂ)p(;)( dt + exp(— TAYP) H(r;z,0\).  (4.29)
It follows from (4.5) that

)exP(— >\l/p§) % 2 Mj(z ) az) {)s—r+j(z ’ x)
ji=0

2 M (z,9,)6,_;,,(z,0) = §,,,G(z,N). (4.30)
j=0

So we have

M\ ;z,9,) V(r;z,)N) (4.31)

= Alp-r-1 J@M eXP(— AP E) G(z,N) f_ (yar)p (§) 8
+ exp(— 7AYP) H(t;z,\) = G(z,\) + exp(— 7AP) H(T; z ,)\).

This implies (1.34) in Theorem 1.13. It follows from Lemma 4.3 ~ 4.5
that there are positive constants a,b,c, A and 7 such that for
7 with O<1'<1"' and (z,N)€Q,x {IX|> A}

IV(7; 2,0 < AMQ\) exp(a |A]""1*1) 4.32)
and if |argA| < 0 ,
|V(T;z,N)| < AMQA) exp(c|z| l)\lllv'). 4.33)

Since H(7;z,\) € Err (b, 7A%), it follows from Lemma 4.3 that

AMQ\) exp(bra@-D|\""1*1) g =g, > 1
|H(r;z ,A)| < (4.34)
AMO) (1 + \DY, g =g, = 1.

Thus we have Theorem 1.13.
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Now let us construct solutions with singularity on the characte-
ristic surface {z, = 0} for L(z ,“8,) . Let us return to Proposition
4.2. Assume that P.S.(M,,,o) 0,8 #*0. Put i=m, in (4.9) and
(4.10). Since Vmg+1 = 1, we have

15,(z, NI < A, B; MQ) 121" D(w,, + 1), 520, (435)
and

19,(z, M) < A, BY'MN) (Is]!), s<0. (4.36)

Let us define, by using 9,(z,\) for i=m,,

v(z) =fc(e> exp(Azy) V¥ (z, ) N7 H(N) dN (4.37)

+ El jc' oy XPAZQ) 0, (2, NG00 .
We set conditions on M(A) and ¢(A\) in order that v(z) converges:
~ Condition IL
@ $)E B(C* — {INI> A}).

(ii) For any a,b (b >a) and any e > 0, there is a constant
C(a,b,e) such that for A€E{A;a<argA <b, [N > A}

IM@)1
o) |

Then we have

< C(a,b,e) exp(elA]). (4.38)

THEOREM 4.6. — Suppose that P.S.(Mp,) (0,) # 0 and
gondition II holds. Then v(z) defined by (4.37) is a function in
02, —{z, = 0}) for a neighbourhood &, of z=0.

Proof. — From (4.35), (4.36) and (4.38) we have for
AE{N;a<argA<b, |A> A}
IV¥(z,\) ¢\ <C(a, b, €) exp(elr]) (4.39)

and
|i3_s(z, ,N) oA I < C(a,b,e) exp(el\) B} s!, s> 0. (4.40)

It follows from (4.39) that the first term of the right h_and side of
(4.37) converges. By the method similar to that used in Ouchi [6, 7]
(see also § 7 in this paper) we can show from (4.40) that v(z)

converges in a small neighbourhood £, of z = 0 except on
{z, = 0} and belongsto O(2; —{z, = 0}).
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We apply Theorem 4.6 to the operator L(X;z,d,) induced
from L(z,0,) (see (1.38)), that is, we put M(A;z,9,) =L(A;z,9,).
Hence my = ¢, v,y =1 and v, =0,/(0, — 1) (see § 1).
P.S.(M,,)) (0,§)+# 0 implies that

P.S. Ly, 0,6)=a,_, 0,)#0,§=(0,0,...,1). (441)

THEOREM 4.7. — Suppose that Condition II and (4.41) hold,
Then v(z) defined by (4.37) for L(\; z,9,) satisfies

L(z,9,) v(z) = g,(2) (4.42)
and
(a,n)" v(z",0) = k,,(z") w(zy), 0OSE<m-—s,—1, (4.43)

where
8@ = . 0, XPA20) Gz, M) $Q) (4.44)
and
o(z,) = fc o exp(Azg) X" $(A) d\. (4.45)
Proof, — We have
L(z,d,) v(z) = j;(e)exp(kza) L(\; 2,93,) V*(z, ) X" $(\) dA

+ 3 exp(z) LO\; 2,9,) 5_,(z, N) X"~ $Q\) d\
Ex-f(:(o)p(°)( ) 5_, (2, VN BN

» = [ ) P02 GG N GO M =g,5)  (446)

_a_ h n = i h + (N -r 4
(az,,) v(z",0) j; o exp(Az,) ( az,,) V*H(Z",0, )X $(\) d\
+ Azy) (==)" v_,",0, N7 G\ dA
:‘:‘1 _/;(a)exp( Zo) (az,,) v_s(",0, X" S

= k,(z") fc 0, KPRz X GA) AN. (4.47)

Remark 4.8. —

(i) In the construction of V(z,\), the initial values k,(z'")
O<h<t —-1) in (43), may depend on A. So, by assuming
that k,(z",%) satisfies Condition II, we can generalize Theorem
4.6and 4.7.

(if) We have g,(2) € 8(Q, — {z, = 0}) and

0(z,) € 8(C! —{z, = 0}).
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So Theorem 4.7 is an existence theorem of solutions with singularity on
characteristic surface {z, = 0} of the equation L(z, a.,_)_v(z) =g,(2).
By choosing ¢(A) or k,(z'',\) suitably (see § 7 in Ouchi [7]), we
have many solutions. This is a generalization of Hamada, Leray and
Wagschal [3] and Persson [9].

5. Construction of solutions II.

In this section we shall construct u(z) so as to satisfy
L(z,d,) u(z) = g,(2) G.1)
and
u(z) ~0 as z;, — 0 in Us(w) 5 (5.2)

where S(w) = {z,€C!; |arg zy| < w}, w <7/2(0, — 1). If such
u(z) exists, ug(z) = uy(z) —u(z) is a desired solution of Theorem
1.9. We shall apply the results in § 4 to the operator L(\;z,9,)
induced from L(z,d,). We find out u(z) under Condition I. Let 0,
(1 <i < be positive numbers such that 6, > 6, >...> 0, >x/2
and 6, <wv,/2. First let us recall what we shall need. L(\;z,d,)
is an operator with a parameter A defined by

LQA;z,0,) v(z,\) = exp(—Az,) L(z,9,) (exp(Az,) v(z,N))

k
=2 NL(z,d,) v(z,N), (5.3)
i=0
AA,L) = {( —s;,5); (i,5) €A}, 5.4)
v, =, = 0gy ;0 ;i — 1), 1<i<Q,
i 1= Og41-1/0g4y 5.5)
Y2V 2 Y2 =,
PS.(L;_) (2,8 = a,,(z, ¢') for (i,s)€A (5.6)
and Condition I implies
a,,si(O ,EV#0 for (i,s)€EA. 6.7

g,(z) is represented in the form
£,(2) =fc(e)eXp(>\zo) G,(z,\)dn, (5.8)
where G,(z,\) €6(£2, x {|X| > 1}) and for (z,\) €Q, x {I\| > 1}
1G,(z, M1 < A exp(c’IX]™) (5.9)
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and if |arg\|<6,,
1G,(z, M) < A exp(—cI\M™) (5.10)

for positive constants A, ¢' dand c.
2

Now we construct u(z) in the form u(z) = D, u;(z), where
i=1

u,(z) =‘/(‘:(6)exp()\zo) Vi(z,Nd\, 1 <is<—1, (5.11)

and the form wuy(z) will be given after construction of u;(z)
(1<i<®—1). By applying Theorem 1.13 which was discussed
in detail in § 4, we have

PROPOSITION 5 .1.~— Suppose that 2= 2. There are functions
Vi(iz,N,G(z,N)E 02, x{IN>1}), &, D Q,, such that

L(\;z,3,) V,(z,)) = G,(z,\) — G,(z,N), (5.12)
where for (z,\)€Q, x {I\| > 1}

IV,(z,N)|

! < A exp(b' INY™) (5.13)

[G,(z,N)|
and if |arg\|<§,,

IV,(z,N)] < A exp(—b |A["™) (5.14)
and

1G,(z, M| < A exp(—b|A[""2). (5.15)

Here A, b' and b are positive constants.

Proof. — Set M(\) = z?é)x |G, (z ,)\ll. By Theorem 1.13 there
are functions V,(7;z,N\), H,(7;z,\) € 0(8, x {|\| > 1}) such that
L(;2,9,) V(1;2,N) = G,(z,\) + exp(— 7X'"2) H,(7; z, \) (5.16)
and the following estimates hold:

For (z,N)€Q, x {IN[>1},

V(752,01
|H,(7;2,N)|

andif |argA|<@4,,
[Vi(r52,N)] < AMQ\) exp(d|z| Ikll/") (5.18)

< AMQ) exp(a|\Y"2) (5.17)
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and AMQ\) exp(er??927 D |\ Y72y g > 1,
IH,(7;z, M| < (5.19)
AMQ\) (1 + AN, g, = 1.

Put G,(r;z,A\) = —exp(— T\""2) H,(7;2,)). In view of (5.10)
and (5.19), if |arg\|<<0,, there exist 7= 7, and a constant
¢, > 0 such that

1G,(7,; 2, N < A exp(—c, I]V72). (5.20)

From (5.10) and (5.18), there is a small neighbourhood 2, of z =0
such thatif |argA\| <6,

IV, (7,52, M1 < A exp(— ¢, |INY"1). (5.21)
Hence, by putting
V,(z,N) = Vi(7,;2,N) and G,(z,A) = Gy(7,;z,0N),
we have (5.12), (5.14) and (5.15). (5.13) follows from (5.9) and (5.17).
By repeting above arguments we get
PROPOSITION 5.2. — Suppose that £ = 2. There exist functions

V,(z,)\) (A<i<®—1) and G(z,N) <i<2)€5(ﬂlx{l)\|>l})
such that

LQA;z,9,) Vi(z,\) = G;(z,\) — Gy, (z2,N), 1 <i<—1,(5.22)
where for (z ,\) €8, x {|\|> 1}

IVi(z, NI T
< A exp(b’ |\t (5.23)
|G1+1(Z » M
and if |arg\| <0, ,
IV,(z, M1 < Aexp(—bIA["" (5.24)
and
|G,y (2, N | < A exp(— b|\|7i41), (5.25)

Here A, b' and b are positive constants.
Now by using V,(z,\) in Proposition 5.1 and 5.2, we define
u,(z)=/;(o)exp(Kzo)V,(z,k)dk, i=1,2,...,8—1. (526)

g-1
Then v(z) = ), u,;(z) satisfies
i=1

-1
L(z,3,)0(z) = 3 j;(e)exp()\zo) L(\;z,d,) V,(z,N\) d\.
i=1
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Hence we obtain

L(z,9,) 0(z) = — g(2) + £,(2), &,(2) = fc 0, P02 Gz N A\
(5.27)

Finally we have to find out u,(z) so as to satisfy
L(z,0,) uy(z) = go(z) and uy(z) ~0 as z, — 0 in S(w).
From Theorem 4.7, we have

PROPOSITION 5.3. — There is a function uy(z) € 5(&20 —{z, =0}
for a neighbourhood S, of z = 0 such that
L(z,0,) ug(z) = go(2) (5.28)

and uy(z) is expressed in the form

ug(2) = [ exp(hzo) VE(z, NX7 A\ (5.29)

+ 3 [ exp(hzg) v_y(z, VN0,
s=1 ~C(0)
where V7(z,\), v_y(z,\) (s=1,2,...)€0(Q, x {IN >1}) and

for (z,N)€Qyx{|INl> 1} there are positive constants A,B,, b’
and b such that

IV (z, NI < A exp(d’[N""%) (5.30)
and
lv_,(z, N | < AB!(s!) exp(d’' [\|"/™) (5.31)
and if |arg\| <0,
IVi(z, M| < A exp(—b [N (5.32)
and
lv_,(z,\)| < ABi(s!) exp(— bIN[""?). (5.33)

Proof. — Gy(z,\) satisfies the condition of Theorem 4.7. So,
putting k,(z')=0 (0<h<m-s, —1) in (4.43), we can get
uy(z) %in the form of (5.29). In view of (4.35) and (4.36), we have

(5.30) ~ (5.33).
2

Thus u(z) = Y, u,(z) satisfies L(z,d,)u(z) = g;(z). The

i=1  __

asymptotic behaviour of u(z) will be investigated together with u,(z)
in § 7. Estimates (5.24), (5.32) and (5.33) are useful to study asym-
totic behaviourof u,(z) (1 <i<®) as z, — 0.
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6. Estimates.

In § 6 we shall prove Proposition 3.5 and 4.1. We employ the
method used in Hamada [2], Hamada, Leray and Wagschal [3] and
Wagschal [10]. Several propositions will be given without proofs.
We refer the details of this method and proofs of the propositions
to these papers or Komatsu [4].

Let a(z) and b(z) be formal power series. a(z) << b(z)
means that each Taylor coefficient of b(z) bounds the absolute
value of the corresponding coefficient of a(z). In the following
of this section we assume that 0 < r < R’' <R.

PrOPOSITION 6.1 (Wagschal). — Let ©O(t) be a formal power
series in one variable t such that ©(t) >> 0 and (R'—¢) ©(¢) > 0.
Then for the derivatives ®(¢t) (j=0,1,...) we have

0 (H K R'OVV(1) 6.1)
and
(R -1 @V () < (R =R @N(y). ©(6.2)

In the sequel let us put
t=pzytz, +...+z (6.3)

“n
with a constant p = 1 to be determined later and assume that ©(z)
satisfies the conditions in Proposition 6.1.

PropoSITION 6.2 (Wagschal). — Let
B(z,d,)= X b,(2) (3,)* (6.4)

|a|<m,ao<m0
be a linear partial differential operator with coefficients b,(z) holo-
morphic on {z € C"!; |z;| < R}. Then there is a constant B inde-
pendent of ©(t) and p =1 such that if
u(z) <K eW(y, (6.5)
then m
B(z,9,) u(z) < Bp ° @U*) (). (6.6)

ProroSITION 6.3 (De Paris). — Let
Cz,3,)= X ¢(2)(3,)° (6.7)

la|<d,ag<d
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be a linear~partial differential operator with coefficients c,(z) holo-
morphic on {z €C"*';|z;| < R}. Then there are constants p =1
and B, independent of ©(t) such that if

v(z) << QU+ (¢) 6.8)
Uy (2') K OUM(D)|, ,, 0<h<d—1, '
then the solution u(z) of the initial value problem
9, PYu(z) =C(z,0,) u(z) + v(z
(,0)" (2) (z,0,) u(z) (2) (6.9)
(6,0)"u(0,z') =u,(z), 0Sh<d-—1,
satisfies
u(z) < B,09(s). (6.10)
Set
= k>
090 = :
! . (6.11)
®p) = ——— t—s) k190 (5)ds, £k<O0.
090 = ——y7 J =9 (s) ds

If k>0, 0®(¢) satisfies the conditions in Proposition 6.1. We
have

PROPOSITION 6.4. —
[ A\ gk (p) = glr+k)
) (d_t)('o GEXAMION

(i) If 0<t<r/2, then

10%)(8)| < 2/r)** k!, k=>0;

(6.12)
(0B (8)| <2t*/r(k!), k> 0.
(ii) If R'>2r and k<0, then
2Ik|

R—1)"10®(t) << - 6%)(s). 6.13
R =07100(0) K 7 60(1) (6.13)
(iv) Let ¢=1 and s and j be nonnegative integers, then
nl 9Uenl+9) (4) <L pi gUenl+s+i () | (6.14)

Since we do not find the proof of (iv) anywhere, we prove it.
It follows from
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nl 9Uenl* ) (g) = ni([en] + 5) ! /(r — £)(lenl*s+1)

r ni([en] + 5)!
(r—87 (r — p)enl+s*t

<< ,-lo([cnl+:+l)(t)_

~ Since 6®)(¢), k <0, does not satisfy the conditions in Pro-
position 6.1, we employ
!

0,(H = 6® =0, %£1,+2,...). .
WO = gy 0P (=0, 21,£2,..) (6.15)
For ©,(¢), we have
PROPOSITION 6.5. —
W) If k<h,
0V (1) K @Y=+ (y) (6.16)
(i) If k=0,
. R’
000 (1) K OV () K —; 8U*E (1) ; (6.17)
R —r
(iii) If k<0 and R'>2r,
k| '
(+k) ) L Ut(p). 6.1
6UR () KO (D) K iz, 0900 (6.18)

Now we show Proposition 3.5 and 4.1.

Proof of Proposition 3.5. — First let us recall the equations
which w,(z) (n=1,2,...) satisfy;
k1 k!
sc0 (k—5)!s!
k1 n!

i! y
P L Gl Gontst A0 @) ()

0<j<1J +6,0f(2). (6.19)

We show by induction on n that there are constants M and A
such that w,(z) << MA" (8D (¢) (6.20)

We note that w,(z) = 0 for 0 <n <k — 1. Now let us assume that
(6.20) is valid for 0 < n< N + k —1. Hence we obtain, by Propo-
sition 6.2,

@, 4y (2) <K MANB OUN+DRI+E=0)()

<K MAN+k-1B gD () (0< s <k - 1),

W (2) = = (07 ) ~10,14(2)
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and
A j(2,0,) (3,)) " Wy, (2) K MAN*S-IB UM —DBIMy, 4= ()

where M,J = ord A,., I(Z ,0,). Soit follows from (6.14) that
N!
N-Hj!
where Ay = [(N+s—/)B] + Mi.i +i—s+j. In view of the defini-
tion of B (seel.12) we have hy < [(N+s—/)B]+i—s+ Bk —i+))
and Ay < [(N+k)B]. Hence we have (6.20) for n = N + k. Thus
it follows from (6.12) that there are constants M and C and a neigh-

bourhood 2, of z =0 such that |w,(z)| <MC"I'(nB + 1) for
Z€EQ,.

ALZ 5 0,) Bz~ < MAYTICE™ (1),

Proof of Proposition 4.1. — Let us recall that v,(z,\) (n =0,
s = — n) satisfy
M,(z,98,) 0, (z,0) + X M(z,3,)v5_54,(z, 0
j>r

+ X M(2,0,) 0,y eger(2,0) =8, 48,,6G(z,0),
i<r

(a,n)h vn,s(z", 0,0 =38,,08;,0k, ", 0<h<t,—1, (621
and sup |G(z,N)|<M(Q) and ord Ml.(z, 9,) =t;. We show by
=)
inductzion on n and s that

(kv D
0,,4(z, 0) << AMQ) B"*C" ©_ (05, (1), (6.22)

where t =2, + 2z, + ...+ pz,. Obviously
V.02, \) <K AMQ) 09(2).

Assume that (6.22) is valid when 0 <n <N -1 and when n =N
and —N<s<S—1. It follows from Proposition 6.2 and (6.16) that

2 Mj(z s az) UN,5_1+,(Z »A)
i>

"« Y AMQ) BNs-ireND @)

j> —[(N"?S—f‘i‘r)pil(t) (6.23)
r
- (INvy [ 1 +H(N48) p ] —[(N+S—j+r) v ])
N+S~j+r AN i
= igr AMQ) B c'De_, (N+S);] (¢

From Lemma 1.12,if j>r,
(N+S—j+ny]l =2 [(N+S)y]+¢4 —¢

r:
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Thus we get
([N, 2,

2 My(z,9,) vy s_jur(z, N) < AMQ) BY*S-ICNE O (0l5), 1 (0).
i>r (6.24)
On the other hand
j:; M;(z,0,) 05 _ysjs5_js, (2N (6.25)

r . ((N=r+j)vypq1+125)

<< AM()\) BN+S Z CN r+iD ®~[(N+S)vili+l ] (t)-

j<r
From Lemma 1.12,if j<r,

[(N=r+pv,,] <Ny, ]1+¢ — .

Thus we also have

_ ([Nv,, ,]1+¢,)
2 My(z,9,) Uy _ g5 ger(2,0) < AMQY) BYSCNE @ [(r'::lsw,]' (1)
I (6.26)

Hence it follows from Proposition 6.3 that (6.22) is valid for n = N
and s = S. We have from (6.18)

v, 5(z,0) << A, MQy) B Cn g1 TIOmD

(1. (6.27)
Soif [nv, ]2 [(n+9s)y],
10, (2,01 < AMQ) B™CIT([nvy,, ] — [(n + 5)v,] + 1) (6.28)
and if [nv,,]1 < [(n + s)v,],
v, (2,01 < A,M(\) BrtoCy |z (0PI
x D([(n + s)v,] — [mw,,,] + 1)1 . (6.29)

We can easily obtain (4.6) in Proposition 4.1 from (6.28) and (6.29).
We can also have (4.7) by the same way. This completes the proof
of Proposition 4.1.

7. Asymptotic behaviour of functions defined by integrals.

In § 7 we study asymptotic behaviour of functions which
appeared in the previous sections. We shall complete the proofs of
Theorem 1.7, 19 and 1.10. Let us recall that S(w) denotes a sector
{zo€C; |argz,| < w} and the path C(d,0), simply C(0), is defin-
ed by (1.20). We denote by £, adomain {z€Q; |arg z)| < w}.
We shall first study the functions u,(z) (1 <i<Q—1) and next
uy(z) and finally u,(z).
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Now set
h,,(z) =fc(6) exp(Az,) N 1H(z, N d\N (m€Z), (7.1)

where H(Z,)\)Ea(ﬂ x {IN|> A}, Q={zeCc"?; |z;] < R}, and

satisfies the following conditions:
(i) For any a,b (b >a) and any € > 0, there is a constant
C(e,a,b) such that for (z,NEQx{A;IAN>A, a<arg <b}
|H(z,\) | < C(e, a, b) exp(el]). (7.2)

(ii)_:l“here are constants H, ¢ >0, v> 1 _zind 6 with
wy/2 > 0 > w/2 such that for {A\; N[> A, |arg\| <6}

sup IH(z ,A\)| < H exp(—c|AY7). (7.3)

Now we define a path é(d ,0) as follows: Put for 72 <0 <
C~(d,0)={N=s5 exp(—if); d <s <o}

Co(d,0) = {A=d exp(ip); —0 < p <8} (7.4)
C*(d,0) = {A = s exp(i6); d<s< oo}

and C(d 0)—C (d, 0)UC°(d 0)UC+(d 9). Cd, 0) starts at
°°exp(—10) on C- d,a), passes on C°(d 0) and endsat ccexp(if)
on C*(d,()) (see fig. 7.1). C(d 0) is a deformation of C(d,0).

\ ¢, 6)

Fig. 7.1.

Under the condition (i) and (ii), we have

ProposiTION 7.1. —

@ h,,(2) € B(Q — {z, = 0}).
Suppose 0 < w <0 —w/2. Then
(i) h,(z) ~0 as z,— 0 in Q
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(iii) there are positive constants A,B and C which depend on
w suchthatfor z€EQ, , if m=20,
1(8,)* h,,(2)| K HA®B™ I T((m + ag)y + DI(le'| +1) (7.5)
and if m 2 o,
1(3,)* h_,, (2)] (7.6)

- lo|! 1y
< HAM™IB™* |zo|"° m — ot exp(— C|z, 1O 1),
o) !

where H in(7.5)and (7.6) is the same in (7.3).
Proof. — By varying 0 in the path C(0), we have (i). Let us
show (ii) and (iii). Suppose that = > @>mn/2. Put 6 =0 in C@).

By deforming C(0) to C(L 0), where L is a constant such that
L > A, we have

Lim k() = [ N"UH(z, ) d (1.7)
C(L)9)
zoeS(w)
uniformly in z2'€Q', Q' = {z'€C"; |z;] <R}. By deformation

of the path C(L,g) to a path lying in the domain {ReX > 0},
(7.7) is zero.

Let us show (iii). We have

(9,)* h,,(2) (7.8)
= [ _expnz) 2 () Xm871(2,0)"0 (2,0 H(z , 1) .
C(L, 0)

Let m 2 0. Then we have for zE€Q

1(3,)* h(2) | < Hg 2 BT (;‘°) F(lal—2+1) i

=0
Lo 5, SXPC IR APt )]
Cc(L,

< HA™! B/ T((m + ao)'r + 1T+ 1). (79
Let m=>a,. Put L®) = (m—Q+1)|zy|7! +d]|zo|7"/""D) |
where d > 0 will be determined later. We have

a 4 lal—2+ —_
1(3,) —m(Z)'<HQZo(°)B "T(lal =2+ 1) (7.10)

x [ L®T™# exp(Ihzo] — cIA[Y7) |aN.
C(L(®),0)
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Let us estimate a function H,(z,\) = exp(|Azy]l —c|A|Y7). We

have for A€ C°(L(), 9)

IH,(z, M) < e™~2* exp(d|z,|~ YD — cL(Q)V7) (7.11)
< eMm—2t1 exp(dlzol‘l/("_l) —cd\/” |Zo|-l/(7_l))-

So we choose d so small that it satisfies d —cd'/” <—C<0.
Thus we have for A € C°(L(R), 6)

IHy(z,N) | < €™~ **1 exp(— Clzo|~H(r=1)), (7.12)

For A€C*(L(®),0) and z€RQ, , we have ReAz, < —alA| |z,
and
IH,(z, )| <exp(—alXzol —blzo YOy, b>0.  (7.13)

Therefore, it follows from (7.10), (7.12) and (7.13) that there are
A = A(w), B=B(w) and C = C(w) such that

1(8,)* h_,, (2)|

- o'|!
< HA!® B *1 |2,|™ 7% exp(— Clz, |~ YO~ D) o]

(m—ag)!
(7.14)

Next suppose o=x. If larg z, + 60| <m/2, the expression
(7.1) holds. By using it and choosing L(R) as in the above arguments,
we have (ii) and (iii) in Proposition 7.1.

Let us apply Proposition 7.1 to the functions ,(z) (1 <i< %)
constructed in § 6. Recall that

u,(z) =f exp(Azo) V,(z, N d\, (1<i<Q@—1), (7.15)
C(6
where ©

IV,(z, V1 < A exp(c’' X1, v = v, (7.16)
and if |arg\| <0,,,,7/2 <0, <7Y;,,/2,
IV,(z, M| < A exp(—c|A["™) (7.17)
and
uy(z) = f exp(hz) Vi(z, M)A dh (7.18)
2 f exp0ze) B, (2, A
where

[V (z,N)| < Aexp(c' [\[Y72), (7.19)
lv_,(z,N| < ABs! exp(c'I\["® s> 0, (7.20)
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and if |arg\| <0y, m/2 <0, <mvy,/2,
IVi(z,N)| < Aexp(—c N9, (7.21)
15_,(z,N) | < AB®s! exp(— c|A['%). (7.22)

Here z€Q,N[>1,60,>60,>...>0,>7/2 and ¢' and ¢
are positive constants.

For u(z), 1 <i<®—1, wehave

PrOPOSITION 7.2. — Let w;,, bea number with

0 <y <O —m/2.
Then
(i) u(z2)~0 and g,,(2) ~0 as z,—> 0 in z€EQ

(ii) for z€

Wit1 s

Wigy '’

1(3,)% u;(z)| < AB™' I(eyy, + ) T (] + 1). (7.23)
Proof. — Proposition 7.2 follows from Proposition 7.1 (see (5.25)

and (5.27)).
For uy(z), which belongs to 5(9 —{zy,=0}), we have

PropPoSITION 7.3. — There are constants ry, A,B and C such
that for z € Q,,, with 0 <w, <6, — /2 and |z,| <r,

lug(2)| < A exp(—C |z, %V (7.24)

and
1(3,)% ug(2)| < AB'® T(ayy, + 1) T(1e’| + 1). (7.25)

Proof. — Put
wi(z) = [ expQzg) Viz,N) A~"d\ (7.26)
c(o)

and

ug o(2) = fc PR (CATINERVE Sl N (R 20

It follows from Proposition 7.1 that (7.24) and (7.25) hold, if we

replace u,(z) by u;(z). So we have only to consider 2 ug (2).
=1

@

We have, from Proposition 7.1, for z € 2,

lug ()] < AB™! |z[°=1 exp(— C [z, "7V, (7.28)
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Hence if |z,| <r, = 1/2B, Y luy(2z)| converges. Thus we have
§=1

(7.24). Let us show (7.25). In view of (iii) in Proposition 7.1 we have
A BiC(la' N (sDT((ag — ) vg + 1), o, =S,

1(9,)%uy ((2) IS
A BiCHzg 5% (|&/|1) (s D/T((s — o) +1), <.

(7.29)

Hence, there is an 7, such that for z € Quwg,, N {lz,] <7}
o %o
V@) up (IS ABIC (1) (s T((0g — )y + 1)
s=1 s=1

+ 2 ABSC [z [T (111 (s)/T((s — o) +1)

s>ozo
< AB'¢! Mgy + 1) (1| +1). (7.30)

Thus we have (7.25).
Next we investigate the function u,(z). To do so we study
asymptotic behaviour of functions defined as follows. Put
1
W)= o= [ expQzg) N7 W(riz, AN,  (1.31)
2mi Y@y
where

Y
Y(riz,N = [ " exp(— NP E) B(z, §) dt (7.32)
(1]

Here 6 = (g — 1)/p, p,4€N, p>q, (p,q) =1, 0<r<7,
and

8(z,0) = 3 ¢,(2) tP/(np)! (7.33)

n=0

where ¢, (z) is holomorphic in £ such that for z €Q
13,)* ¢, (2) | < MA"BT'(nB + || +1), B=plg>1. (7.34)
We choose 7 in order that ®(z,¢) converges. Put

®L(z,8) = 3 p,(2) t"/(np)! (1.35)

n=0
and

©,(2) $"P[(np) ! . (7.36)

+1

®2(z,8) =

n

$1s
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LEMMA 7.4. — There are constants M, C,c and f such that
MBI C™* 1 P(mB + |a| + 1) [¢ |+ (7.37)
exp(c|§19@-D)T(mp + 1), ¢ > 1,

MB'*!C™*1 I'(mB + |a| + 1) [¢ VP [T(mp+1),
I$1<¢,q=1.

1(3,)* @7, (2,91 <

Proof. — We have from (7.34)
10,)° ®2.(z,8)| <MB® X A"T(nf + lal + 1) [£1"/T(np + 1)

n=m+1

1
< MBIaIAm* [¢[m+Dp 3 A’l“""+ L'((n + 1)p)

n=0

D((mB + |a| + 1) [§1"?/T((n + 1)p) T(mp +1).
So, there are constants ¢ and E such that (7.37) is valid.

LEMMA 7.5. — For any w with 0< w <w(B-1)2, if
z2o—> 0 in Q

—l—-f exp(Az,) AP~ ‘d?\f exp(— NP @1 (z,8)de— 0.
2wi Yee) (7.38)

Proof. — We have
S XN Bz, O df = exp(- M) Bz, N), (7.39)

TN
where <I> (z,\) isa polynomlal of A\~ By varymg 0 in C(6)
or deformmg C@@) to C(0) with w + 7r/2 <é < wB/2, we have
(7.38).

Put
Yi(r;z) = " f exp(>\z ) A/P- ldkf exp(— AP E) Bl (2, §) dt
(7.40)
and
Vilriz) = o f exp(rzg YAUP=1 g) f exp(—NPE) B2 (7, ¢) dt
(7.41)

We have y(752) = ¢ (152) + Y2 (7;2) (see (7.31)).

LEMMA 7.6. — Forany w with 0 < w <w(B - 1)/2,
m
\p’ln(r;z) ~ Z 0, (2) (z4)*n! as zy — 0 in z€EQ,. (742)

n=0
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Proof. — We have

1
Ya(r;2) = o Cw)exp(?\zo)k‘/”“d)\

f"‘exp(- APE) Bl (2, 8) dE
0

= [ exp(=NPY) @l (z, ) d

= i fc(e)exp(kzo) 3 (’go v, (2) 7\-(n+1))

2mi
—\lp-1 fﬁs exp(—AP8) @, (2, %) dg‘Ed)\
= 3 2/l — -—1— 1/p—1 d\
0n(2) (z)"/n! Py jc' (o)exp(kzo)x

n=0
1 1
(‘£A5 exp(—\'P¢) @, (z, §) d:) .
Hence from Lemma 7.5 we have (7.42).

LEMMA 7.7. — Suppose that |arg\| <@ with w/2 <8 < up/2

and q > 1. Then thereisa 7y = ‘ro(é) such that
A8

f7° exp(— NPE + ¢|§19@D) £+ DP gt |

(1]

< K[(mp + 1) C™ |\|"™*1*1P)  meN,

holds for some constants K and C dependenton 7.
Proof. — Put ¢(7;t) =t™\® (0<t<1) and
h(¢) = —Re\YPE + c|¢|9/@-D
We have A(§(7;1) = —t7Re AVE + c:(t-r)"/("“) IN|YB . Since
larg A\| <6 <mB/2, there are 7, =17,(0) and d >0 such that

h($(71y; 1)) < —d|NY#t for 0 <t <1. Hence there are constants
K and C such that

folexp(h(f(ro; 1) (t1,)m D27 | \|@D D g,

1
< (1) DR | \| @D (1) fo exp(— d|\|VE¢) e +Dp dt
S KA~ CM D(mp + 1).

LEMMA 7.8. — For any w with 0<w <w(B —1)/2, there
are constants 7, = 7,(w), M and A such that for z€Q _, and
m = a,

18,0 Y2, (1,3 2) | S MA™BI®ID(mp + || + 1) |2o|™ %0 . (7.43)
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Proof. — Take 6 §uch that 7/2 + w <6 <mp/2. If q>1,
by putting 7 = 7, = 7,(6), we have from Lemma 7.4 and 7.7
1(3,)* Y2,(7,, 2) | (7.44)
< KA™1BI (7)™ D(mp + || + 1)fC ATt
where C is a deformation of C(8) in {|argA| < é}. Hence we
have (7.43).If ¢ = 1, we also have (7 43).
In view of Lemma 7.6 and 7.8, we have

PrROPOSITION 7.9. — For any w with 0<w<w(f—1)/2,
thereisa 1, = 7,(w) such that

V(r,52) ~ 0,(2) (z))'/n! as 2z, — 0 in zE€Q,. (7.45)
=0

n

In the following we fix 7 = 7, . Now we show

ProPOSITION 7.10. — There are constants M and C such that
for z€Q, with 0 <w <7w(f—1)/2,

1(0,)* Y(7,52) | S MC™' (a8 + D T(l'| +1). (7.46)

Proposition 7.10 is used to show Theorem 1.11. To show propo-
sition 7.10 we give lemmas. Put

1 oo
Ten(20) = 3= [ expO) NP AN [ exp(= N1 8) 72/(np)! ds

(7.47)

LEMMA 7.11. —
f; NP (exp(~ NPE) §7P (np) D S (7.48)
= exp(— TAV/F) g s‘éo (TAVBYP=s/(np — 5)!¢ .

Proof. — By integration by parts, we have
[ Al exp(— NVPE) (§72[(np) 1) d
TN -
=[S )™ exp(= AP} (577 /(np) 1) d

= 8w ot ey i - !

s=0
= ’i ((TAYVBYP=3[(np — 5)!) exp(— TAYVF),
s=0



CHARACTERISTIC CAUCHY PROBLEMS 173

LeMMa 7.12. — Forany w with 0 < w <w(B—1)/2, thereare
constants A= A(w) and B=B(w) such that for z,€ S(w) N{|z,| <1}

AB**"T(B(R — n) + 1) R=n),
g, (2)| < (7.49)
AB**" I(B(n — Q+ 1)t e<n).

Proof. — Choose the path C so that ReAz, < 0 and ReAYf >0,
By taking C = C(0) or C(f) for suitable 8, we have from Lemma
7.11

| ARCRTIN
<M Y [exp(—re( M) (INE=" 108/ (np — 5) 1) |aN.
§=0

Hence we have (7.49).

Put for a nonnegative integer %

Ui o715 2) (7.50)

8
-1 2+1/p-1 T 1 i
= 5= fc o NP exp0uz) ) jo' exp(— AP E) & (2, ¢) dt

(i=1,2).

LEMMA 7.13. — Let R < m. Then for
zEQN 0<w<np-1/2,

| o(7y,2) | S AB™*D(mB + & —m + 1) (7.51)

w ?

holds for some constants A = A(w) and B = B(w).
Proof. — We have
‘I,yln,ﬂ(‘rl ) Z)

1 oo
= — A k”*‘/"“dki exp(—N/Pg) ® (2,80 d
2ai gy P20 ST exp( NP0 @72, ) d

= [, N &) (2, )
1

1 m m
= — AL=n=1)dh\— I

2mi C(g)OXPO\Zo) (n2=:0 #n(2) ) ngo #n(2) oo (o)
=¥ @l -9 % 0,0 L) (7.52)

s=2 n=0
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Therefore, it follows from Lemma 7.12 and (7.34) that

m

| Wm,2 (71, 2 < 2, MAST(sB + 1)/(s — 9!

§=2

+ Y MAIT(nf+ 1)CH"T(R —n) + 1)

[
n=0

+ 2 MAIT(nf + 1) CI"I((n — B + 1)~?

n=2+1

S AB™TI'(mB+2—m +1).

LEMMA 7.14. — Let R < m . Then for
z2€Q,, 0<w<aw(B—1)2,
|\l/,2,,,,2('rl L) S AB™*T'(mB+2—m + 1) (7.53)
holds for some constants A = A(w) and B = B(w).
Proof. — We have, from Lemma 7.4 and 7.7, for a suitable defor-
mation C of C(0)
W,z,.,g(ﬁ , 2)| < KD™ jc' lexp(Azy) | IN[2~™=2aX\T'(mB + 1)
< AB™T'(mB+8—m +1).
Proof of Proposition 7.10. — First we note that
V(ry,2) = ¥, (7,52) + Y2 (7, 2).

Put m = «,. We have

1 m
(9,)* ‘p:n("'l;Z) = i > (;?)\/CV AT*/P=1 exp(\z,) dN
2=0

()

74N
Lot 00 ehe.nds. ase
In view of Lemma 7.4, 7.13 and 7.14 it follows that
1(3,)* Yl (7,;2) | < AB®T(ap 8 + 1)I'(Ja'| + 1) for z €EQ,.
Now we apply Proposition 7.9 to u,(z):

1 T )‘6
= — l/P_l 1 —_ l/p
Uy (2) Py j;m exp(Az,y) A dkj; exp(— AP w(z,¢) dt,

(7.55)
where

w(z,$) = Y, w,(2) £ /(np)! (7.56)

n=k
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and for z in a neighbourhood U of z =0

[(9,)*w,(2) | < AB"CI'(nf + || +1). (7.57)
Hence we have

uy(z) ~ Y, w,(2) (z)"/n! as z;, — 0 in Ug. (7.58)

n=k
Since L(z,0,) uy(z) — f(z) ~ 0 and uy(z) = O((zo)¥) as z,—> 0
in Ug, it follows from uniqueness of solutions of formal power series
that u,(z) ~ #(z). Thus this completes the proof of Theorem 1.10.
Finally we show Theorem 1.11, Put
Si(w) = {z€C;larg zo | < w}
and
S (w)y={zeC";largz, — 7| < w} with 0 < w <w(y, —1)/2.

Then it follows from Theorem 1.10 _that there are functions u,(z)
and u_(z) suchthat u,(z), u_(z) € O(U —{z, = 0}),

W(z,0z) u,(z) = f(z) (7.60)

and

+w)? (7.61)

u,(z) ~u(z) as z;, — 0 in Ug
u_(z) ~u(z) as zy — 0 in Ug (.

Define u(x) as follows

Uy (2)| gpay for x>0,
u(x) = (7.62)
u_(2) | n+1 for x, <O.

u(x) defined by (7.62) can be extended as a C™ function up to
{xy, = 0}. Thus we have for x€V = UN {Imz = 0},

L(x,9d,) u(x) = f(x)

(7.63)
(3x)* u (0, x') = up(x'), 0<R<k—1.

In view of Proposition 7.11, we have the estimate (1.28) of u(x).
This completes the proof of Theorem 1.11.
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