Sullivan associated a uniquely determined to any simply connected simplicial complex . This algebra (called minimal model) contains the total (and exactly) rational homotopy information of the space . In case is the total space of a principal -bundle, ( is a compact connected Lie-group) we associate a -equivariant model , which is a collection of “-homotopic” ’s with -action. will, in general, be different from the Sullivan’s minimal model of the space . contains the total rational homotopy information of the spaces , and, in addition, it incorporates the action of (on ).
Sullivan associe une D.G.A. sur (qui est bien déterminée) à un complexe simplicial simplement connexe . Cette algèbre contient toutes les informations sur l’homotopie rationnelle de . Dans le cas où est l’espace total d’un fibré principal à groupe structural (où est un groupe de Lie compact et connexe), nous associons un modèle -équivalent , qui est un ensemble de (sur ) avec une action de qui sont “-homotopes” (en général n’est pas le modèle minimal de Sullivan de ). contient toutes les informations sur l’homotopie rationnelle de et de et incorpore l’action de sur .
@article{AIF_1982__32_4_205_0, author = {Kumar, Shrawan}, title = {A $G$-minimal model for principal $G$-bundles}, journal = {Annales de l'Institut Fourier}, pages = {205--219}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {4}, year = {1982}, doi = {10.5802/aif.900}, zbl = {0488.55011}, mrnumber = {84f:55008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.900/} }
TY - JOUR AU - Kumar, Shrawan TI - A $G$-minimal model for principal $G$-bundles JO - Annales de l'Institut Fourier PY - 1982 SP - 205 EP - 219 VL - 32 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.900/ DO - 10.5802/aif.900 LA - en ID - AIF_1982__32_4_205_0 ER -
Kumar, Shrawan. A $G$-minimal model for principal $G$-bundles. Annales de l'Institut Fourier, Volume 32 (1982) no. 4, pp. 205-219. doi : 10.5802/aif.900. https://aif.centre-mersenne.org/articles/10.5802/aif.900/
[1] Notions d'algèbre différentielle ; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (Espaces Fibres), Bruxelles (1950), 15-27. | MR | Zbl
, (a)Les connexions infinitésimales dans un espace fibré différentiable, Id, 29-55.
, (b)[2] Characteristic forms and geometric invariants, Annales of Mathematics, 99 (1974), 48-69. | MR | Zbl
and ,[3] Real homotopy theory of Kähler manifolds, Inventiones Math., 29 (1975), 245-274. | Zbl
, , and ,[4] Homotopy theory and differential forms, Seminario di Geometria, (1972).
, and ,[5] Cohomology of Lie algebras, Annals of Mathematics, 57 (1953), 591-603. | MR | Zbl
and ,[6] Lie group representations on polynomial rings, American journal of Mathematics, 85 (1963), 327-404. | MR | Zbl
,[7] Differential forms and the topology of Manifolds, Proceedings of the International Conference on Manifolds, Tokyo, (1973), 37-49. | MR | Zbl
,Cited by Sources: