Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)
Annales de l'Institut Fourier, Tome 32 (1982) no. 3, pp. 183-213.

Nous nous livrons dans cet article à une étude systématique des propriétés de régularité microlocale des opérateurs pseudo-différentiels possédant la propriété de transmission. Nous définissons à cet effet une notion de spectre singulier sur le bord, noté WF ω (u) pour les distributions uD (R + n ) régulières en la variable normale x n (WF ω (u))= signifiant que u s+t=1/2 H s+t près du bord), et montrons que WF ω-m P(u 0 ) x n >0 est inclus dans WF(u) si P est le degré m et possède la propriété de transmission. Nous montrons finalement que ces résultats permettent d’obtenir un théorème de régularité (microlocale) pour les solutions des problèmes de Cauchy associés à des opérateurs différentiels à bicaractéristiques transverses à l’hyperplan des données initiales.

This work is devoted to a systematic study of the microlocal regularity properties of pseudo-differential operators with the transmission property. We introduce a “boundary singular spectrum”, denoted WF ω (u) for distributions uD (R + n ), regular in the normal variable x n (thus, WF ω (u)= means that u s+t=1/2 H s+t near the boundary), and it is shown that WF ω-m [P(u 0 ) x n >0 ] is a subset of WF(u) if P has degree m and the transmission property. We finally prove that these results can bef used to examinate the (microlocal) regularity of the solutions of differential Cauchy problems, with bicharacteristics transversal to the hyperplane supporting the Cauchy data.

@article{AIF_1982__32_3_183_0,
     author = {Gosson, Maurice De},
     title = {Microlocal regularity at the boundary for pseudo-differential operators with the transmission property {(I)}},
     journal = {Annales de l'Institut Fourier},
     pages = {183--213},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {32},
     number = {3},
     year = {1982},
     doi = {10.5802/aif.884},
     zbl = {0488.35080},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.884/}
}
TY  - JOUR
AU  - Gosson, Maurice De
TI  - Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)
JO  - Annales de l'Institut Fourier
PY  - 1982
SP  - 183
EP  - 213
VL  - 32
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.884/
DO  - 10.5802/aif.884
LA  - en
ID  - AIF_1982__32_3_183_0
ER  - 
%0 Journal Article
%A Gosson, Maurice De
%T Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)
%J Annales de l'Institut Fourier
%D 1982
%P 183-213
%V 32
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.884/
%R 10.5802/aif.884
%G en
%F AIF_1982__32_3_183_0
Gosson, Maurice De. Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I). Annales de l'Institut Fourier, Tome 32 (1982) no. 3, pp. 183-213. doi : 10.5802/aif.884. https://aif.centre-mersenne.org/articles/10.5802/aif.884/

[1] K.G. Andersson, R.B. Melrose, The propagation of singularities along gliding rays, Invent. Math., 41 (1977). | MR | Zbl

[2] L. Boutet De Monvel, Boundary problems for pseudo differential operators, Acta. Math., 126 (1971). | MR | Zbl

[3] J. Chazarain, Reflection of C∞ singularities for a class of operators with multiple characteristics, Rims - Kyoto University, vol. 12, supp. 1977. | MR | Zbl

[4] M. De Gosson, Hypoellipticité partielle à la frontière pour les opérateurs pseudo-différentiels de transmission, Annali di Mat. Pura ed Appl. serie IV, t. cxxiii (1980). | MR | Zbl

[5] M. De Gosson, Parametrix de transmission pour des opérateurs de type parabolique etc, C.R. Acad. Sc., Paris, t. 292. | Zbl

[6] M. De Gosson, Résultats microlocaux en hypoellipticité partielle à la frontière pour les O.P.D. de transmission, C.R. Acad Sc., Paris, t. 292. | Zbl

[7] L. Hörmander, Linear partial differential operators. Springer Verlag, 1964.

[8] L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems. Ann. Math., 83 (1966). | MR | Zbl

[9] L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, L'Ens. Math., t. XVII, fasc. 2 (1972).

[10] Lions, Magenes, Problèmes aux limites non homogènes et applications, vol. I, Dunod, 1968. | Zbl

[11] R.B. Melrose, Transformations of boundary problems, Preprint, Acta Math. (1980). | Zbl

[12] R.B. Melrose, J. Sjöstrand, Singularities of boundary problems, I, Comm. on Pure and Appl. Math., XXXI (1978). | Zbl

[13] F. Treves, Linear partial differential equations with constant coefficients, Gordon and breach, 1963.

[14] J. Sjöstrand, Operators of principal type with interior boundary conditions, Acta Math., 130 (1973). | MR | Zbl

Cité par Sources :