Récemment dans ce Journal J. Esterlé a donné une preuve nouvelle du théorème taubérien de Wiener pour en utilisant le théorème de Ahlfors-Heins pour les fonctions analytiques bornées sur un demi-plan. Ici nous utilisons essentiellement la même méthode pour certaines algèbres de Beurling . Nos évaluations ont besoin d’un théorème de Hayman et Korenblum.
Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras . Our estimates need a theorem of Hayman and Korenblum.
@article{AIF_1981__31_4_141_0, author = {Dales, H. G. and Hayman, W. K.}, title = {Esterl\`e's proof of the tauberian theorem for {Beurling} algebras}, journal = {Annales de l'Institut Fourier}, pages = {141--150}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {4}, year = {1981}, doi = {10.5802/aif.852}, zbl = {0449.40005}, mrnumber = {83j:43007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.852/} }
TY - JOUR AU - Dales, H. G. AU - Hayman, W. K. TI - Esterlè's proof of the tauberian theorem for Beurling algebras JO - Annales de l'Institut Fourier PY - 1981 SP - 141 EP - 150 VL - 31 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.852/ DO - 10.5802/aif.852 LA - en ID - AIF_1981__31_4_141_0 ER -
%0 Journal Article %A Dales, H. G. %A Hayman, W. K. %T Esterlè's proof of the tauberian theorem for Beurling algebras %J Annales de l'Institut Fourier %D 1981 %P 141-150 %V 31 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.852/ %R 10.5802/aif.852 %G en %F AIF_1981__31_4_141_0
Dales, H. G.; Hayman, W. K. Esterlè's proof of the tauberian theorem for Beurling algebras. Annales de l'Institut Fourier, Tome 31 (1981) no. 4, pp. 141-150. doi : 10.5802/aif.852. https://aif.centre-mersenne.org/articles/10.5802/aif.852/
[1] Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congr. Math. Scandinaves, (Helsinki, 1938), Tryekeri, Helsinki (1939), 199-210. | JFM
,[2] The Fourier transforms of measures with compact support, Acta Math., 107 (1962), 291-309. | MR | Zbl
and ,[3] Entire functions, Academic Press, New York, 1954. | MR | Zbl
, Jr.,[4] Translation invariant subspaces of weighted lp and Lp spaces, Math. Scand., 49 (1981), to appear. | MR | Zbl
,[5] A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier, Grenoble, 30 (1980), 91-96. | Numdam | MR | Zbl
,[6] Commutative normed rings, Chelsea Publishing Co., New York, 1964.
, and ,[7] Harmonic analysis in spaces with a weight, Trudy Moskov. Mat. Obšč., 36 (1976), 21-76. = Trans. Moscow Math. Soc., 35 (1979), 21-75. | MR | Zbl
,[8] An extension of the Riesz-Herglotz formula, Annales Academiae Scientiarum Fennicae, Series A1, Mathematica, 2 (1976), 175-201. | MR | Zbl
and ,[9] A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions, (Russian), Trudy Moskow. Mat. Obšč., 7 (1958), 121-148.
,[10] Fourier transforms in the complex domain, American Math. Soc. Colloquium Publications, XIX, New York, 1934. | JFM | Zbl
and ,[11] Spectral analysis in weighted L1 spaces on R, Ark. Math., 11 (1973), 109-138. | MR | Zbl
,Cité par Sources :