Let be a positive Radon measure on the real line having moments of all orders. We prove that the set of polynomials is note dense in for any , if is indeterminate. If is determinate, then is dense in for , but not necessarily for . The compact convex set of positive Radon measures with same moments as is studied in some details.
Soit une mesure de Radon positive sur la droite dont tous les moments existent. Nous démontrons que l’ensemble des polynômes n’est pas dense dans pour , si est indéterminée. Si est déterminée est dense dans pour , mais non nécessairement pour . Ensuite, nous étudions l’ensemble convexe et compact des mesures de Radon positives admettant les mêmes moments que .
@article{AIF_1981__31_3_99_0, author = {Berg, Christian and Christensen, J. P. Reus}, title = {Density questions in the classical theory of moments}, journal = {Annales de l'Institut Fourier}, pages = {99--114}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {3}, year = {1981}, doi = {10.5802/aif.840}, zbl = {0437.42007}, mrnumber = {84i:44006}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.840/} }
TY - JOUR AU - Berg, Christian AU - Christensen, J. P. Reus TI - Density questions in the classical theory of moments JO - Annales de l'Institut Fourier PY - 1981 SP - 99 EP - 114 VL - 31 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.840/ DO - 10.5802/aif.840 LA - en ID - AIF_1981__31_3_99_0 ER -
%0 Journal Article %A Berg, Christian %A Christensen, J. P. Reus %T Density questions in the classical theory of moments %J Annales de l'Institut Fourier %D 1981 %P 99-114 %V 31 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.840/ %R 10.5802/aif.840 %G en %F AIF_1981__31_3_99_0
Berg, Christian; Christensen, J. P. Reus. Density questions in the classical theory of moments. Annales de l'Institut Fourier, Volume 31 (1981) no. 3, pp. 99-114. doi : 10.5802/aif.840. https://aif.centre-mersenne.org/articles/10.5802/aif.840/
[1] The classical moment problem, Oliver and Boyd, Edinburgh, 1965. | Zbl
,[2] Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie, De Gruyter, Berlin, 1978. | Zbl
,[3] Orthogonal polynomials, Pergamon Press, Oxford, 1971. | Zbl
,[4] Remark on orthonormal sets in L2 (a, b), Amer. Math. Monthly, 61 (1954), 249-250. | MR | Zbl
,[5] Extremal spectral functions of a symmetric operator, Izv. Akad. Nauk. SSSR, ser. matem., 11 ; Dokl. Akad. Nauk. SSSR, 54 (1946), 7-9. | MR | Zbl
,[6] Lectures on Choquet's Theorem, Van Nostrand, New York, 1966. | MR | Zbl
,[7] Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci., Szeged., 1 (1923), 209-225. | JFM
,[8] The problem of moments, AMS, New York, 1943. | MR | Zbl
and ,[9] Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971. | MR | Zbl
and ,Cited by Sources: