On 2-cycles of B Diff (S 1 ) which are represented by foliated S 1 -bundles over T 2
Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 1-59.

On donne des conditions suffisantes pour qu’un 2-cycle de B Diff(S 1 ) d (resp. B Diff K (R) d ) représenté par un espace S 1 -(resp. R-) fibré feuilleté sur un 2-tore soit homologue à zéro. Un tel cycle est déterminé par deux difféomorphismes f, g commutants de S 1 (resp. R). Si f, g sont des points fixes, ils se décomposent en f=πf i , g=πg i , où les intérieurs des Supp(f i ) Supp(g i ) sont disjoints et où f i et g i appartiennent ou bien à {h i n ;nZ} (h i Diff ) ou bien à un sous-groupe à un paramètre engendré par un champ de vecteurs ξ i de classe C 1 . Sous certaines conditions sur les normes de f i , g i notre théorème montre que le 2-cycle déterminé par f,g( Diff K (R)) est homologue à zéro. En particulier, si f et g appartiennent à un sous-groupe à un paramètre engendré par un champ de vecteurs C sur R de support compact, le 2-cycle est homologue à zéro. Comme corollaire à notre théorème, toute classe d’équivalence topologique d’espace S 1 -fibré C 2 -feuilleté sur T 2 contient un feuilletage C dont la classe de cobordisme C est nulle. Pour démontrer notre théorème, on démontre que tout élément f de Diff K (R) s’écrit comme un produit de commutateurs d’éléments dont les supports sont contenus dans Supp(f).

We give several sufficients conditions for a 2-cycle of B Diff(S 1 ) d (resp. B Diff K (R) d ) represented by a foliated S 1 -(resp. R-) bundle over a 2-torus to be homologous to zero. Such a 2-cycle is determined by two commuting diffeomorphisms f, g of S 1 (resp. R). If f, g have fixed points, we construct decompositions: f=πf i , g=πg i , where the interiors of Supp(f i ) Supp(g i ) are disjoint, and f i and g i belong either to {h i n ;nZ} (h i Diff ) or to a one-parameter subgroup generated by a C 1 -vectorfield ξ i . Under some conditions on the norms of f i and g i our theorem says that the 2-cycle determined by f,g( Diff K (R)) is homologous to zero. In particular, if f and g belong to a one-parameter subgroup generated by a smooth vectorfield on R with compact support, our 2-cycle is homologous to zero. As a corollary to our theorem, every topological equivalence class of C 2 -foliated S 1 -bundles over T 2 has a C -foliation which is C -foliated cobordant to zero. To prove our theorem, we show that every element f of Diff K (R) is written as a product of commutators of elements whose supports are contained in Supp(f).

@article{AIF_1981__31_2_1_0,
     author = {Tsuboi, Takashi},
     title = {On 2-cycles of $B~{\rm Diff}(S^1)$ which are represented by foliated $S^1$-bundles over $T^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {1--59},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {2},
     year = {1981},
     doi = {10.5802/aif.828},
     zbl = {0439.57018},
     mrnumber = {84b:57019},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.828/}
}
TY  - JOUR
AU  - Tsuboi, Takashi
TI  - On 2-cycles of $B~{\rm Diff}(S^1)$ which are represented by foliated $S^1$-bundles over $T^2$
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 1
EP  - 59
VL  - 31
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.828/
DO  - 10.5802/aif.828
LA  - en
ID  - AIF_1981__31_2_1_0
ER  - 
%0 Journal Article
%A Tsuboi, Takashi
%T On 2-cycles of $B~{\rm Diff}(S^1)$ which are represented by foliated $S^1$-bundles over $T^2$
%J Annales de l'Institut Fourier
%D 1981
%P 1-59
%V 31
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.828/
%R 10.5802/aif.828
%G en
%F AIF_1981__31_2_1_0
Tsuboi, Takashi. On 2-cycles of $B~{\rm Diff}(S^1)$ which are represented by foliated $S^1$-bundles over $T^2$. Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 1-59. doi : 10.5802/aif.828. https://aif.centre-mersenne.org/articles/10.5802/aif.828/

[1] K. Fukui, A remark on the foliated cobordisms of codimension-one foliated 3-manifolds, J. Math. Kyoto Univ., 18-1 (1978), 189-197. | MR | Zbl

[2] C. Godbillon et J. Vey, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci., Paris, 273 (1971), 92-95. | MR | Zbl

[3] M. R. Herman, Sur le groupe des difféomorphismes du tore, Ann. de l'Inst. Fourier, 23, 2 (1973), 75-86. | EuDML | Numdam | MR | Zbl

[4] M. R. Herman, The Godbillon-Vey invariant of foliations by planes of T3, Geometry and Topology, Rio de Janeiro, Springer Lecture Notes, 597 (1976), 294-307. | MR | Zbl

[5] N. Kopell, Commuting diffeomorphisms, Global Analysis, Symp. Pure Math., vol. XIV, A.M.S., (1970), 165-184. | MR | Zbl

[6] S. Maclane, Homology, Springer Verlag, New York (1963). | Zbl

[7] J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology, vol. 10 (1971), 297-298. | MR | Zbl

[8] J. N. Mather, On Haefliger's classifying space. I, Bull. A.M.S., 77 (1971), 1111-1115. | MR | Zbl

[9] J. N. Mather, Integrability in codimension 1, Comment, Math. Helv., 48 (1973), 195-233. | EuDML | MR | Zbl

[10] J. N. Mather, Commutators of diffeomorphisms, Comment, Math. Helv., 49 (1974), 512-528. | EuDML | MR | Zbl

[11] T. Mizutani, Foliated cobordisms of S3 and examples of foliated 4-manifolds, Topology, vol. 13 (1974), 353-362. | MR | Zbl

[12] T. Mizutani, S. Morita and T. Tsuboi, Foliated J-bundle and the Godbillon-Vey classes of codimension one foliations, to appear.

[13] T. Mizutani and T. Tsuboi, Foliations without holonomy and foliated bundles, Sci. Reports of the Saitama Univ., 9, 1 (1979), 45-55. | MR | Zbl

[14] S. Morita and T. Tsuboi, The Godbillon-Vey class of codimension one foliations without holonomy, Topology, 19 (1980), 43-49. | MR | Zbl

[15] R. Moussu et R. Roussarie, Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.E.S. Publ. Math., 43 (1974), 143-168. | EuDML | Numdam | MR | Zbl

[16] T. Nishimori, Compact leaves with abelian holonomy, Tôhoku Math. J., 27 (1975), 259-272. | MR | Zbl

[17] T. Nishimori, SRH-decompositions of codimension-one foliations and the Godbillon-Vey class, Tôhoku Math. J., 32 (1980), 9-34. | MR | Zbl

[18] G. Oshikiri, The surgery of codimension-one foliations, Tôhoku Math. J., 31 (1979), 63-70. | MR | Zbl

[19] F. Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sc. Ec. Norm. Sup., 4e série, t. 5 (1972), 599-660. | EuDML | Numdam | MR | Zbl

[20] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Inventiones math., 39 (1977), 253-275. | EuDML | MR | Zbl

[21] F. Sergeraert, BГ [d'après MATHER et THURSTON], Séminaire Bourbaki 30e année, 1977/1978, n° 524, Springer Lecture Notes 710. | Numdam | Zbl

[22] S. Sternberg, Local Cn transformations of real line, Duke Math. J., 24 (1957), 97-102. | MR | Zbl

[23] F. Takens, Normal forms for certain singularities of vector-fields, Ann. Inst. Fourier, 23, 2 (1973), 163-195. | EuDML | Numdam | MR | Zbl

[24] W. Thurston, Non-cobordant foliations of S3, Bull. A.M.S., 78 (1972), 511-514. | MR | Zbl

[25] W. Thurston, Foliations and groups of diffeomorphisms, Bull. A.M.S., 80 (1974), 304-307. | MR | Zbl

[26] W. Thurston, A local construction of foliations for three-manifolds, Proc. Symp. Pure Math., vol. 27 (1975), 315-319. | MR | Zbl

[27] W. Thurston, Existence of codimension-one foliations, Ann. of Math., 104 (1976), 249-268. | MR | Zbl

[28] G. Wallet, Nullité de l'invariant de Godbillon-Vey d'un tore, C. R. Acad. Sc., Paris, t. 283 (1976), 821-823. | MR | Zbl

[29] J. Wood, Bundles with totally disconnected structure group, Comment, Math. Helv., 46 (1971), 257-273. | EuDML | MR | Zbl

[30] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer-Verlag (1964). | MR | Zbl

Cité par Sources :