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ON 2-CYCLES OF B Diff (S1) WHICH
ARE REPRESENTED

BY FOLIATED S^BUNDLES OVER T2

by Takashi TSUBOI

1. Introduction.

In this paper, we give several sufficient conditions for a 2-cycle of
BDiff(S1) represented by a foliated S1-bundle over a 2-torus to be
homologous to zero.

Consider e^O^i, the group of exfoliated cobordism classes of oriented
3-manifolds with oriented codimension one foliations. By a result of
Thurston [26, 27] together with the fact that closed oriented 4-manifolds of
arbitrary Euler numbers exist, we have

^^ ̂  ̂ (BF\)

where ^(BP^) is the 3-dimensional oriented bordism group of Haefliger's
classifying space BT\ for F\ structures. Since Qi(X) = H^(X;Z), i = 0,
1, 2, 3. for any topological space X ([30]), we have

Q3(Bn)^H3(Bn;Z).

We want to know the structure of these groups. In the case when
r = 0, the classifying space BF? is contractible (Mather [7]). In the case
when r ^ 2, however, these groups are known to be very large. In fact,
according to Thurston, the Godbillon-Vey homomorphism

GV: H3(BP;;Z) -^ R ( r ^ 2 )

is surjective ([24]). We are naturally interested in the kernel of the
Godbillon-Vey homomorphism.
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The Godbillon-Vey numbers of the following six types of foliations are
zero; moreover, they are foliated cobordant to zero.

1° Bundle foliations of surface bundles over S1.
2° Foliations of 3-manifolds which are defined by non-vanishing closed

1-forms.
3° The Reeb foliation of S3 (Mizutani [II], Sergeraert [20]).
4° Foliations constructed 'by the spinnable structure of 3-manifolds

(Fukui [I], Oshikiri [18]).
5° The foliation obtained by a foliated surgery along a transverse closed

curve from a foliation cobordant to zero ([I], [18]).
6° Foliations of closed 3-manifolds whose leaves are noncompact,

proper and without holonomy except finitely many compact leaves
Mizutani-Morita-Tsuboi [12]).

In [28], Wallet proved that the Godbillon-Vey number of a Diff^(R)^-
bundle over a 2-torus is zero, and in [4], Herman generalized it for C7-
foliated (r ^ 2) S1-bundles (DifT+(S1 ̂ -bundles) over a 2-torus. Moreover,
the Godbillon-Vey numbers of the following foliations are zero : foliations
with finite depth and with abelian holonomy (Nishimori [17]); foliations
without holonomy (Morita-Tsuboi [14], see also Mizutani-Tsuboi [13]);
foliations which are almost without holonomy (Mizutani-Morita-Tsuboi
[12]).

The question whether these foliations are foliated null-cobordant
depends on the question whether foliated S1-bundles over T2 are foliated
null-cobordant. This problem is closely related to the problem whether the
corresponding 2-cycles of BDiff(S1)^ are null-homologous.

A foliated S1-bundle over a manifold N is a foliation ^ of the total
space of an S1-bundle over N such that every leaf of ^ is transverse to
the fibers. Such a exfoliation is determined by the total holonomy

"homomorphism 7ri(N, ^) -> Difr(S1) (Diff^(S1) if the foliation is
transversely orientable), where ^ is a base point of N (connected) and
Difr(S1) (resp. Diff^(S1)) denotes the group of (resp. orientation
preserving) C-diffeomorphisms of S1.

Let Difr^S1)^ denote the group DifT+(S1) equipped with the discrete
topology. (Diff+(S1) has the natural C-topology). Transversely oriented
CY-foliated S1-bundles are considered to be Diff+(S1 ̂ -bundles. The
classifying space BDifT+(S1)^ for DifT+(S1 ̂ -bundles is defined and
H^(BDiff+(S1)^) is isomorphic to H^(Diff+(S1)), the homplogy of the
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abstract group Diff+(S1). We also consider Difr^(R)^-bundles and their
classifying space B Diff^(R)^, where Difr^(R)^ denotes the group of C7-
diffeomorphisms of R with compact support equipped with the discrete
topology.

Since a transversely oriented exfoliated S1-bundle over a closed
oriented 2-manifold is a transversely oriented foliation of the total space of
the S1-bundle, we have a natural homomorphism

s : H^Difr^S^Z) ^ H3(Bn;Z).

On the other hand, according to Mather [9], there is an isomorphism

a: H2(Dif^(R);Z) -. 113(8?, ;Z).

Choosing an embedding i of R to an open interval of S1, we have a
homomorphism

^ : H,(Dif^(R);Z) -> H^DifW^Z)

and the following commutative diagram :

H2(DiffK(R);Z) -^
CT^^

H3(Bn;Z)

H^Difr^S^Z)^^

This diagram implies that 5 is surjective. A more interesting fact is the
following : every element of P^BPi; Z) is represented by a C-foliated S1-
bundle over 5^, where k ^ 2 and 2^ denotes a closed oriented 2-
manifold of genus k, the reason being that cr is an isomorphism and that
there is a fiber preserving embedding of a trivial R-bundle over £^(fe ^ 2)
into a trivial S1-bundle overZ^'

Our main theorem concerns Diff^(R)^-bundles over T2. We do not
know whether every Diff+(S1 ̂ -bundle over T2 is homologous to a union
of Difr+(S1 ̂ -bundles which belong to the image of i^. We note that, for a
2-cycle of B Diff^ (S1)^ to belong to the image of i^, it is necessary that its
Euler class is zero. In the case of a DifT+(S1 ̂ -bundle over T2, it is known
that its Euler class is zero (Wood [29]).

Our plan is as follows.
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In § 2, we review the homology of groups. For a transversely oriented
C'-foliated S1-bundle over T2, we have a homomorphism

v|/ : Z2 ^ 7Ci(T2, *) -^ Diff,(S1).

Put / = i|/(l,0) and ^ = ^(0,1). Then, since /^ = gf, (f, g) - (g, f) is a
2-cycle of B Diff+(S1) and it is homotopic to the image of the classifying
map Bv|/. In this paper, [f,g] denotes the class represented by
(/»fi0 - (^/). We will prove some formulae for {f,g}

In § 3, we study the structure of commuting diffeomorphisms of the real
line and the circle which have fixed points. We sum up results of
Sternberg [22], Kopell [5], Takens [23], Sergeraert [20] and Wallet [28],
and state Theorem (3.1) which shows that the structure of such commuting
diffeomorphisms is fairly simple. This implies that foliated S1-bundles over
T2 have fairly simple structure. They have been classified up to topological
equivalence (Moussu-Roussarie [15]). Theorem (3.1) gives a more precise
classification and the background of our main theorem, Theorem (6:1).

In § 4, we give some preliminary theorems necessary in the later
sections. There, results of Mather [8, 10] and Sergeraert [20] play an
important role. We also mention some of the attempts, which we made at
the beginning of our study in this direction, to prove {/, g} = 0 when /
and g belong to a one parameter subgroup generated by a smooth
vectorfield. These attempts give some new examples of foliated S1-bundles
which are null-cobordant. Moreover, the proof of Theorem (4.5) inspired us
the proof of our main theorem.

After a discussion on the construction of smooth diffeomorphisms in
§ 5, we state our main theorem, Theorem (6.1), in § 6. Theorem (6.1) says
that, under some conditions on the norms of the commuting
diffeomorphisms / and g , the class {/, g} is zero in H^Diff^R); Z).
In particular, if / and g belong to a one parameter group of
transformations generated by a smooth vectorfield on R with compact
support, then {f,g}=Q. One expects that one might remove the
condition on the norms, but we have not been able to do it so far. As a
corollary to our main theorem, we can see that, every C°°-foliated S1-
bundle over T2 has a C°°-foliated S1-bundle which is topologically
equivalent to it and which is C00-foliated null-cobordant.

In § 7, we show that our main theorem, (6.1), follows from Theorem (6.3)
which says that a C^-diffeomorphism of R with compact support can be
written as a composition of commutators of C00-diffeomorphisms whose
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supports are contained in that of the original one. Theorem (6.3) is a
generalization of a theorem of Sergeraert [20].

We devote §§ 8 and 9 to examining a method of writing a
diffeomorphism of [0,1] close to the identity as a composition of
commutators. We show that a diffeomorphism sufficiently close to the
identity can be written as a composition of commutators of
diffeomorphisms which are close to the identity. In §8, we treat
diffeomorphisms of [0,1] whose supports are contained in (1/8, 7/8). There,
we use a device of Mather [10] and an implicit function theorem of
Sergeraert [19]. In §9, we treat Diff^([0,l]) and analyze with care the
proof of a theorem of Sergeraert [20] which says Hi(Diff^([0,l]); Z) = 0.

In § 10, we prove Theorem (6.3); this will complete the proof of our
main theorem. Theorem (6.1).

The author wishes to thank I. Tamura and T. Mizutani for helpful
conversation and encouragement at every stage of development of this
paper.

2. Lemmas for the group homology.

In this section we prove some lemmas concerning the group homology.
First, we recall the definition of the homology group (with integral
coefficients) of a group G.

The homology of a group G is the homology of the following
complex :

{0} <— Z <— Z[G] ^— Z[GxG] ^- Z[GxGxG] ^—.

where Z[G"] = Z[G x G x • • • x G] is the free abelian group generated
by n-tuples (/i,.. . ,/J (f,e G, i = 1,... ,n).

For (/^..../JeZIG"]^^^,

8(A,...Jn) =(/2,...Jn)+ Z (-l)Vi,...J^i,...,/J
1 = 1 +(-i)"(/,,... ,/,,_i),

and for (/)eZ[G], 8(f) = 0.
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If A/2 = /2/i(/i,/2eG), CA./2) - (/2,/i) is a 2-cycle of the above
complex. Let {f^fz} denote the class of (f^fz) — (/2,/i). Obviously,
[fM= -{/2,/l}.

The inner automorphisms act trivially on the homology group of a
group ([6]). In particular, we have

LEMMA (2.1). — Let /, g, h be elements of G. Suppose that fg = gf.
Then {h-1 fh^h^gh] =={/ ,^}.

Proof. — For the sake of completeness, we show the equality. By a
direct computation using fg = gf, we have

3{W1^) - (^-W-W+ (h^h^gh^h^fh)
-to,^-1^)^^,^)-^^)}

= {(/^)-W)} - {(h^fh.h^g^-ih^gh.h^fh)}.

Before stating other lemmas we note the following. Since

0,(BG) ^ H2(BG;Z) ^ H^(G;Z)

and BG is an Eilenberg-MacLane space, every 2-cycle of BG is
represented by a homomorphism v ( / : 7ti(Z,^) -> G, where £ is a closed
oriented 2-manifold. Moreover, this cycle is null homologous if and only if
there is an oriented 3-manifold W which bounds Z and a homomorphism
(J/ : 7ii(W,^) -> G such that the following diagram commutes :

7li(£,^) ^G

where * e£ = 5W and i : <9W ^ W. We also note that, when
fg = gf^ the class {/, g] is represented by the homomorphism
i|/ : Z2 = 7Ci(T2,*) -> G defined by v)/(l,0) = / and <|/(0,1) = g .

LEMMA (2.2). — Let /, ^i, . . . , ^ n fc^ elements of G. Suppose that
f9i = 6^0'=L. • -^). ^^

n

{/^r.-^} = E {/^}
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and

{gi'"9nJ} = Z W}.

Proof. — Consider n disjoint disks D^, . . . , D in a 2-disk D2 Put
/ " \

V = ID 2 - (J IntD, x S1. Then 7Ci(V,(^,0)) is isomorphic to
\ 1=1 /

( Z ^ . " . ^ Z ) x Z , where (*,0)eV, 8D, x {Q}'s and {*} x S1

correspond to generators of 7ti(V,(^,0)) and

[BD, x {0}] . . . [^D, x {0}] = VD2 x {0}].

We can define a homomorphism <)/ : 7ii(V,(^,0)) -» G so that

WD,x{0}])=^ ( f= l , . . . , n )
and

^([{*}xS l])=/.

Since the boundary 5Bv|/ of the classifying map Bv|/ : V -> BG
represents {/,^i .. . g^} - S{/,^J, we have proved Lemma (2.2).

It is worthwhile to note {/, id] = 0. For,

(id, f) - (f,id) = c)(fW).

Using Lemma (2.2), we have

LEMMA (2.3). — Let /, g be commuting elements of G. Then for integers
W , M , we have {/w,^} = mn{/,^}.

LEMMA (2.4). - Let /, h be elements of G. Suppose that f commutes
with hfh~1. Then f commutes with hfh~lh~lfh and
{f^hfh^h^fh} = 0 .

Proof. — By Lemma (2.1), we have

{f,hfh-1} = {h^fh^h-^hfh-^h}

= {^A/} '
= -{/,^-W
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Therefore we have

o^Uvr^+L^-VTz}
={/,V^-l/l-l//^}.

LEMMA (2.5). — Let v|/ be a homomorphism from Z2 to G. Let a, (3
a^ a', P' be two pairs of oriented generators of Z2. Then

WMW = W)MP)}.

Proof. — Since Z2 ^ 7Ci(T2,^), this lemma may look trivial from the
topological view point. However, for the sake of completeness, we shall
prove it. Since the orientation preserving automorphism group of Z2 is
SL(2,Z), we have

f^-C TV (p ^eSL(2.Z).\p} \r sAlV V s )

From Lemmas (2.2), (2.3) and the fact that [f,f] = 0, it follows that

{v|/(a'),<|/(P')} = {(^(^^(^(p^vKa))^^^))5}

= pr{x|/(a),^(a)}+ps{<)/(a),^(P)}

+ ^{<|/(P),^(a)}+^s{^(p),<|/(p)}

=(ps-^){v^(a),»|/(P)}

={<)/(a),^(P)}.

LEMMA (2.6). — Let /, g be commuting elements of G. Suppose that
there exist coprime integers m, n such that / " g " = id. Then {f,g} = 0.

Proof. — Let r, s be integers such that ms — nr = I . Consider a
change of generators as in Lemma (2.5); then we have

{f,g} ={fmg'',frgs}={id,frgs} = o.

LEMMA (2.7). — Let f, g be commuting elements of G. Suppose that
there exist elements h^ ...,h^ of G such that

g = n ̂ 2,- M
.1=1
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and
fh,=h/ (/•=!,...,2^c).

Then {f,g} = 0.

Pyw/ — Let 2^ denote a closed oriented 2-manifbld of genus k , and
let D2 denote a (small) disk on it. Consider V = S1 x (S^ - Int (D2));
then

7ii(V,(0,*)) = <a,(3i,.. .,P^ : ap,=P,a(f=l,.. .,2^)>

((0,^)eS1 x 3(Sfc-Int(D2))), where a is represented by the curve
S1 x { ^ } and the curve {0} x (9(5^-Int (D2)) represents a product of
commutators [Pi,^] • • • Wik-i^ik]'

Since / and hi 's commute, there is a well-defined representation v|/ of
7ii(V,(0,*)) in G such that

v|/(a) = / and v|/(P,) = ^ (f = 1,... ,2k).

Considering the classifying map Bv|/ : V -> BG, we have
3B^(V) = (/^) - to,/), that is, {/,^} = 0.

3. Commuting diffeomorphisms
of the real line and the circle.

In this section we prove the following theorem.

THEOREM (3.1). - Let /, g be elements of Diff^(R) which have fixed
points; Fix(/) ^ 0, ¥ix(g) ^ 0. Suppose that f and g are commuting
with each other; fg = gf.

Then there is a countable family {Ij of disjoint open intervals satisfying
the following conditions.

(1) / |R - u I, = id^_^ and g\R - u 1, = i^R-ui,
(2) For /|I, and g\l^

either (A) there exist coprime integers m^, n^ and a smooth dijfeomorphism
hi of R, such that Supp (h^) = 1^,

/|T,=(/z,|T^ and g\li = (W-,
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or (B) there exist real numbers 5,, t, and a vector field ^, C1 on R and
C00 on R - ai,, 5MC^ that Supp(^) = I,, /|I^. and g\1, are the time s,
map and the time r, map of ^JI^, respectively.

Remark. - For commuting diffeomorphisms of S1 with fixed points,
we have a theorem similar to Theorem (3.1). For, such commuting
diffeomorphisms lift to those of R with fixed points.

This theorem clarifies the structure of the centralizer of a
diffeomorphism of R with fixed points, and we can see to what extent our
main theorem to be given in § 6 is effective.

To prove Theorem (3.1), we need some lemmas. Let R+ denote the set
of non-negative real numbers.

LEMMA (3.2) (Kopell [5]). - Let f be an element o/Diff(R+) (r ^ 2)
00

such that n /'([0,x)) = {0} for any xeR^ - {0}. Let g be a C1-
i'=i

diffeomorphism of R+ which commutes with f. Suppose that there exists a
point y e R + - {0}, such that g(y) = y . Then g = id^ .

Moreover, if fo(f) ^^(id), then g is completely determined by jo°(g),
where r^ = min {s-J^^id)}.

LEMMA (3.3). - Let /, g be commuting ^-diffeomorphisms (r ^ 2) of
R which have fixed points. Suppose that /(O) = 0 and the germ of f at 0
i5 not that of the identity. Then g(0) = 0.

Proof. - Suppose that g(Q) ^ 0. Since /^"(O) = ^/(O) = ^(0), ^(0)
is a fixed point of /. Put inf {gn(0);neZ} = a and
sup {^(0);neZ} = b. Since Fix(^) ^ 0, either a ^ - oo or
b ^ + 0 0 . If a ^ — oo, the point a is a fixed point of /. Applying
Lemma (3.2) to g\[,a,b) and f\^a,b), we have f\[_a,b)=id^,
which contradicts the assumption. If b ^ + oo, we have b e Fix (/).
Applying Lemma (3.2) to g\(a,b~] and /|(^,fc], we have the same
contradiction.

LEMMA (3.4) (Sternberg [22], Kopell [5], Takens [23], Sergeraert [20]).
- Let f be a C^'-diffeomorphism of R^ such that Fix ( / )={()}.
V 7?(/) ^7c°(^), then there is a C°°-vectorfield ^ such that
7?(y ^7?(0), / fs the time one map of ^, and the centralizer of f in
Diff°°(R+) coincides with the one parameter group of transformations
generated by ^.
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V 7o°(/) =7o°(^)» there is a vectorfield ^, C1 on [0,oo) a^ C00 on
(0,oo), 5ucn rnat j'i(y =j'i(0), / is tne rime one map of ^, an^? the
centralizer off coincides with the set of those elements of the one parameter
group of transformations generated by ^ which are of class C00

LEMMA (3.5). - Let f be a C^-diffeomorphism of [0,1] such that
Fix(/) = {0,1}. Let g be a C^-dijfeomorphism which commutes with f.
Then

either (A) there are coprime integers m, n and an element h of
Diff00 ([0,1]) such that f = h™ and g = h\

or (B) there are real numbers 5, t and a vectorfield ^, C1 on [0,1] and
C°° on (0,1), such that f and g are the time s and the time t map of ^,
respectively.

In the latter case, if ;•?(/) ^j^(id) (resp.j^(f) ^ ff(id)), then ^ is of
class C°° at 0 (resp^. at 1).

Moreover, if j^(f) ^ j^(id) (resp. jf (/) ^ j °° (id)), J S ( r e s p J ^ ) :
(/»^) "̂  RC^] ls an injective map, where </,^> denotes the subgroup of
Diff00 ([0,1]) generated by f and g . (See Wallet [28].)

Proof. - Consider /|[0,1) and ^|[0,1). By Lemma (3.4), there
corresponds a vectorfield ^o to /|[0,1). Since ^|[0,1) commutes with
/|[0,1), by Lemma (3.4), ^[[0,1) is the time t map of ^o ^or some rea!
number t . If t is a rational number, put t = n/m
(m,neZ,m7^0,(m,n)==l). Let HQ denote the time I/m map of ^o. Then
/| [0,1) = ̂  and ^|[0,l)=/i5. If we take integers p, <? such that
pn + ^m = 1; we have

^-(^[O^WI^W.

So, if we put h - g^ (he Diff00 ([0,1])), we have / = ^w and g = h\
Thus, (A) holds if t is rational.

If t is an irrational number, consider /|(0,1] and |̂(0,1]. By Lemma
(3.4), there corresponds a vectorfields ^ to /|(0,1], and g\ (0,1] is the
time t^ map of ^i for some real number ^. We show that t^ = t and
^ol(0,l) == ^ i l (0 , l ) . Let F : R x [0,1) ^ [0,1) and G :
R x (0,1] -> (0,1] be the one parameter subgroup generated by ^o ^d
^, respectively. For any real number 5, take a sequence {(Wp^)^N °^
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pairs of integers such that w, -+- tn, -> s as i -> oo. Then we have

F(^+rn,,l/2) = fVWl) == G(m^iw,,l/2).

If we put s = 0 , we have F(w^+^,l/2) -> 1/2 as i -> oo. Hence we
have w, + r^. -> 0, that is, t = ^. For general 5, we have

F(s,l/2) = lim F(m,+rn,,l/2)
1-^00

= lim G(w,.+^,l/2)
I'-»CO

=G(5,1/2).

Therefore, we have ^ol(04) = ^i 1(0,1).

Thus ^o and ^ define a vectorfield ^, C1 on [0,1] and C00 on
(0,1). It is obvious that / and g are the time one map and the time t
map of ^, respectively. Consequently, (B) holds if t is irrational.

The rest of Lemma (3.5) follow^ from Lemmas (3.2) and (3.4).
For a diffeomorphism / of R (or S1, [0,1]), put

Fix-CO = {xeFixCO; j^(f) =j^(id)}.

Following Sergeraert [20], we put

Ditf^([0,l]) = {/eDiff^O,!]); ^(/) =j^(id), ^(/) =JT(id)}.

The following lemma is the main step of the proof of Theorem (3.1).

LEMMA (3.6). - Let f be an element of Diff^([0,l]) such that
Fix^C/) = {0,1}. Let g be an element of Diff°°([0,l]) which commutes
with f. Then

either (A) there are comprime integers m, n and an element h of
Diff^([0,l]) such that f = /T, g = h\

or (B) there are real numbers s, t and a vectorfield S,, C1 on [0,1] and
C00 on (0,1), such that j^g) =;;(0), j^) =^(0) and f and g are the
time s map and the time t map of ^, respectively.
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To prove Lemma (3.6), we need another lemma which gives an estimate
on the norm of the vectorfield given in Lemma (3.5). For a real valued
function h on [0,1], put

14.= max ^°(x)|, i = 0 , 1 , . . . .
xe[0,l]

We may regard a diffeomorphism / of [0,1] as a function on [0,1] and
we have |/|, = \f — i^, i ^ 2. On the other hand, vectorfields on [0,1]
are naturally considered as functions on [0,1].

LEMMA (3.7). - Let f be a C00-diffeomorphism of [0,1], such that
f (x) < x for any x e (0,1) and \ f - i d \ , ^ l / 2 ,
l/"1-^!, ^ 1/2(1=0,1,2). Suppose that there is a C1-vectorfield ^ on
[0,1] whose time one map coincides with f. Then

|^lo ^ 2|/-^|o exp ([/-^^(l+l/-1-^!)),

|^li ^2\f-id\,+4\f-id\,\f-id\, exp(2|/-f^(l+|/-1-^)).

Proof. - Put ^(x) = - n(x)(x-/(x)), where yi(x) is a positive
continuous function on (0,1). Then, according to Sergeraert ([20]), if
/'(O) = 1, [i(x) is continuously extended to a function on [0,1) with
p,(0) = 1. In the same way, it is easy to show that, if /'(O) < 1, [i(x) is
again continuous on [0,1) with ^(0) = - (log (/'(0)))/(1-/'(O)).

Using the equation ^(/(x)) = f{x)^(x), we have

WY) — fn+l(Y} n-1 1

" 1•M -t>(o) ;•" ——m- ,n T^J ™ "»>•
Following Sergeraert [20], we obtain an estimate on \[i\o as follows.

First we have

"-1 f^Yl— fn+l(x}(**) n /VM) = ,, (
,=o x - f{x)

"nL /^ ^^'M-^1^))2!n ji-e(/'(jc)) f..2(,j>
1 = 0 I 7 W—7 WJ

where e(x) = - | (1 -t}f"(x-t(x-f{x)})dt ([20], 2.4).
Jo
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/•(^-/•^(X)
Since |e(x)| < , |/|, and ___ _\ . ^ \f-\, we have|y.+i(^_y.+2(^

z f r v ^ — f > + l (Y' i
W^P^^-f1^

. ̂  1^12< E-—l/-llll/•(x)-/•+l(x)|
i=0 2

^1/121?!^ ^^Q^

^\f\z\f~\ 3
< — — 2 — — ^ 8 '

(***)
/"(^-/"^(x)

x-/(x)
exp(-|/Llj

^

r\)^"\\f\
>=0

/"(^-/"^(x)
x-f(x)

f'w)

/'I/LI/'1!!exp(^ ^

Thus, by (*), we have

H(0)expf- 1 /121/ 1 1 1 ) ^ ^x) < HWexpd/IJ/-1!!).

If 1/2 < /'(O) < 1, then we have

|U(0)| = |-(log(/'(0)))/(l -/'(0))| < 2.

On the other hand, if /'(O) = 1, then |i(0) = 1.

Therefore, we have

^^expO^I/-^).

An estimate on |^|o follows immediately.

l^lo < l/-^lolnlo
<S2|/-y|oexp(|/|2[/-lU
< 2\f-id\o exp (\f-id\^(l +1/-1 -id\^}.
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To estimate |^|i, we use another formula of Sergeraert ([20], 2.6, 2.7).
Put

00 { " ( f i x } } i~l

Kl(x) = z TTT^J n /w))-i=0 J 17 W) j=0

Then we have ^'(x) = log(/'(0)) + Ki(x)^(x). Using (***), we have

[/•(X)-/^1^)

Î MI ̂  I - I
,=ol/ o l x-f(x)

^\f\2\r\'< expI/'

exp OWIi

^/-^(l-l/-1-^
<2|/-i^exp

An estimate on |^|i is obtained as follows.

l^li ^log(l-|/-(W|i)+|KJol^lo
< 2\f-id\, + 4\f-id\o\f-id\^ exp (2\f-id\^(l+\f-1-id\,)).

COROLLARY (3.8). - Let {/,},eN be a family of C"'-diffeomorphisms of
[0,1] such that Fix C/;.) = {0,1} (ieN) and

lim |/,-i^. = 0 (/• = 0,1,2).
l'-»00

Suppose that there is a family {^},eN °/ C1-vector fields on [0,1] suc/i ^a^
^^ time one map of ^ coincides with f^ for each i. Then

lim |^|o = 0 and lim |^|i = 0.

Proof. - For a diffeomorphism h of [0,1] such that \h - id\^ < 1,
we have

l^-^lo = \h-id\^
l/i-1-^! ^ |/z-^|^/(l-|/,-^|^)

and
l^i-1-^ < |/i-^/(l-|^-^li)3.
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Therefore we have

limL/;.-1-^^ (/== 0,1,2).
l-»-00

Since, for each f , f,~1 is the time one map of - ̂  and either f^ or
fi~1 satisfies the assumption of Lemma (3.7) for sufficiently large f ,
Corollary (3.8) follows from the estimate of Lemma (3.7).

Now we are ready to prove Lemma (3.6).

Proof of Lemma (3.6). — By Lemma (3.3), every point of Fix (/)

- Fix°°(/) is fixed also by g . Put [0,1] - Fix (/) = (J J^., where
j _

J j ' s are disjoint open intervals. Then, by Lemma (3.5), for each j, f\Jj
and g \ J j satisfy the condition (A) or (B) of Lemma (3.5).

For intervals J j and J^ (j ^ k), there are only finitely many
intervals J^ between them. By the injectivity of the jet map at the fixed
points between J^ and J^, /|Jy, g\]^ and /[J^, g\\ satisfy either
(A) of Lemma (3.5) with the same m, n or (B) of Lemma (3.5) with the
same 5, t.

In the former case, we have / = ^w, g = h", where

h = gPfi (p, q e Z, pn + qm = 1), he

a (M of Lemma n-6^ holds

Diff^([0,l]).

Therefore (A) of Lemma (3.6) holds.

In the latter case, for each 7, take the vectorfield .̂ which
corresponds to f\Jj. If Jj n J^ is not empty, that is, is a one point set
{ * } » by Lemma (3.4), the vectorfields ^ and ^ which correspond to
f\Jj and /|J^ are of class C°° at ^, and have the same oo-jets at
^ . Hence the vectorfields ^ 's on Jy 's define a C°°-vectorfield ^ on
(0,1).

Now we extend ^ so that ^(0) = 0, and show that ^ is of class
C1 at 0. In the same way, we can show that ^ is of class C1 at 1
with ^(1) = 0.

If there are only finitely many intervals J j in a neighborhood of 0,
0 is an extreme point of some interval Jy. Therefore, by Lemma (3.5), ^
is of class C1 at 0.

In the case when there are infinitely many intervals Jy in a
neighborhood of 0, by the reordering of the suffixes, we may assume that
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there is a decreasing sequence of positive real numbers b,(i e N) such that

J , = ( ^ + i , b ) and lim ^ = 0.
i-»oo

Since j^(f) = j^W, for integers m, n (O^m^n), we have

-ytt ——— W

SUp K/-^)^^)! ^————— SUp \(f-id)^(y)\
o^y^x (n—m) ! o^y^x

yfl ——— M

^/——,7l/-<.(n—m)!

In particular,

sup |(/ - î GOl ^ -^w \f- id\,.
Yej , (n—m) \

In order to estimate sup \^(y)\ and sup |^.(^)[, we consider the linear
Y6J/ YGJ;

homeomorphism

A,: [0,1] - [fc,^,fc,]

defined by A^.(x) = (b^-b^^x + ^--n and the vectorfield (A^1)^.
on [0,1]. The vectorfield (A^1)^. corresponds to the diffeomorphism
A.-VA, of [0,1], and, for A/VA, we have

IA^/A.-^I, = (b,-b^,r~1 sup K/-^)^^)!
y^

^(b.-b.^r-^-^f-id^
(n-m)\

Put n = 3; then, for m = 1, 2, we have

lim \A^fA-id\^ = 0.
J-»00 -

Since we have

|^-^lo ^ \h-id\,

for a diffeomorphism h of [0,1], we have

lim lA^/A^.-^lo = 0.
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Therefore, by Corollary (3.8), we have

limKA; %i;,|, =0 (m=0,l).
J-*oo

Since

s"Pl^=(^•-^l)l-m|(A71),i;,L
y e J ,y v : J ]

for any integer m ^ 0, we have

l imsup |^ ,L=0 (m==0,l).
J^00 y e J j

Therefore, we have

lim sup ^(yd = 0 (m=0,l).
x-^O 0<y<x

Consequently, ^ is of class C1 at 0.

Thus (B) of Lemma (3.6) holds, and we have proved Lemma (3.6).

Using Lemma (3.4) instead of Lemma (3.5) if necessary, we can prove the
following lemmas just as we did in Lemma (3.6).

LEMMA (3.9). - Let f be a C^-diffeomorphism of R+ = [0,oo) such
that Fix^C/) = {0}. Let g be a C^-diffeomorphism of R+ which
commutes with f. Then

either (A) there .are coprime integers m, n and a C^-diffeomorphism h
of R+ such that Fix^) = {0}, / == ^ and g = h\

or (B) there are real numbers s, t and a vector field ^, C1 on R+
and C00 on R+ -{0}, such that j1^) = ̂ (0), and f and g are
the time s map and the time t map of ^, respectively.

LEMMA (3.10). - Let f be a C^-diffeomorphism of R such that
Fix(/) ^ 0 and Fix°°(/) = 0. Let g be a C^-diffeomorphism of R
which has fixed points and commutes with /. Then

either (A) there are coprime integers m, n and a C^-diffeomorphism h of
R such that f = V and g = h",

or (B) there are real numbers s, t and a C^-vectorfield ^ on R such
that f and g are the time s map and the time t map of ^, respectively.
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Now, we prove Theorem (3.1).

Proof of Theorem (3.1). - First note that, if the germ of / at a point x
of Fix°°(/) is not that of the identity, then xeFix°°(^). For, by
Lemma (3.3), xeFix(^). If x e Fix(^) - Fix00^), x is an isolated
fixed point of g . Since the oo-jet of / at x coincides with that of the
identity, by Lemma (3.2) or (3.4), the germ of / at x coincides with
that of the identity; this is a contradiction.

Now, put R -(Fix^nFix00^)) = ul,, where I, 's are disjoint
open intervals. We show that {Ij is the desired family. It is obvious
that {IJ satisfies Theorem (3.1) (1). Theorem (3.1) (2) is ^shown as
follows.

Since 81, c: Fix^/) n Fix°°(^), 1, is invariant under / and g .
By the choice of I;, either / or g is not the identity on I,, so
we may assume that f\l,^ î . Then Fix^/lT,.) = 81,. For, if
Fix°°(/) nl,.^ 0, .there is a point x of Fix°°(/) n I, such that the
germ at x' of / is not that of the identity. Therefore xeFix0 0^);
consequently, x e Fix°°(/) n Fix00^), which contradicts the definition
of {IJ .

_ If I, is a bounded interval, applying Lemma (3.6), we have h, or ^ for
f\ I, and g\\,. Take the extension of h, (resp. ^,) such that
^IR-I, = ^R-i;(resp. ^|R_i^.=0); then we obtain the desired diffeo-
morphism (resp. the desired vectorfield).

If 1, is not a bounded interval, I, is a half line or the whole line. In
the case when I, is the whole line, Theorem (3.1) follows from Lemma
(3.10). In the case when I, is a half line, applying Lemma (3.9), we obtain
the desired h, or ^ as in the case of bounded intervals.

We have proved Theorem (3.1).

4. Preliminary theorems.

In this section, first we give certain classes of foliated S^R-)
bundles over a 2-torus which are homologous to zero in the classifying
space. To prove the homological triviality of these 2-cycles, we use theorems
due to Mather [8,10] and Sergeraert [20] which say that the one
dimensional homology group of certain groups of diffeomorphisms are
zero.
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THEOREM (4.1). - Let /, g be elements of DifT+(S1) (resp. Diff^R))
(r ^ 3). Suppose that there exist a finite number of disjoint open intervals

P q
Ii, .. .,Ip, Ji, .. . ,J^ sue/! that Supp (/) c= (J 1^ an^ Supp(^) c= (J J^..

1=1 j= i
77i6?n f °g = g of and {f,g} = 0 fn

H2(Difr^(S1)) (resp. H,(Di^(R))).

Proof. - By a theorem of Mather [8, 10], we have H^Diff^K)) = 0
(r ^ 3). Therefore, g can be written as a product of commutators :

9 = [Mi] U^M . • • E^2fc-i^2j,

where /i, e Diff+(S1) (resp. Dif^(R)) and

Supple U J,(f=l, . . . ,2/c).
7=1

Since / and h, 's commute, by Lemma (2.7), we have {f,g} = 0.

Using a theorem of Sergeraert [20] which says that

H,(Diff^([0,l])) = 0,

we can prove the following theorem in the same way.

THEOREM (4.2). - Let /, g be elements of Diff?(S1) (resp. Diff^(R)).
Suppose that there exist a finite number of disjoint open intervals I^, . . . , Ip,
J i , . . ., Jq such that

P _ q _
Supp (/) c: (J 1̂ . (the closure) and Supp(^) c (J Ĵ . (^ closure).

1=1 j = i

TT^n / commutes with g and

{f,g}=0 in H2(Diff?(S1)) (resp. H^(Di^(R))).

The following theorem is a corollary to Theorem (4.2). For /,
^eDiff^(S1) (or Diff^(R)) and xeS^orR), let Orb^>(x) denote the
closure of the orbit of x under the action of the subgroup generated by /
and g .
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THEOREM (4.3). — L^r /, g be commuting orientation preserving C°°-
dijfeomorphisms of a circle; i.e., /, ^eDiff^°(S1) and f og = g of.
Suppose

(1) Fix(/) ^ 0, ¥ix(g) ^ 0,

(2) Int (Orb<^>(x)) = 0 /or an^ x e S1

an^
(3) Fix°°(/) n Fix°°(^) fcas only finitely many connected components.

Then {f,g} = 0 m H^(Diff?(S1)).

Remark. — By Theorem (3.1), the above condition

Int(0rb<^(x))=0

implies that the leaf through xeS l (= K~l{:^)) of the foliated bundle is a
proper leaf.

Proof. — First assume that Fix°°(/) n Fix°°(^) is non-empty, and
put S1 — (Fix°°(/) n Fix°°(^)) = ul^, where I .̂ 's are disjoint open
intervals of S1. Note that the number of intervals is finite. By Theorem
(3.1) and the condition (2) above, for each f , we have coprime integers m^,
n, and a C°°-diffeomorphism h,, such that /|T, = (^|If)"11 and
^|T, = (^,|V1. Therefore we have

/ ^n^ ' and ^ = n ^ -
i j

By Lemmas (2.2) and (2.3), we have

{^}={n^-,n^}
L i j )

= E^^jI^P^}-
i j

If i ^7 , we have {Mj} = 0 by Theorem (4.2). Since {h^} = 0, we
have {f,g} = 0.

Similarly, if Fix°°(/) n Fix°°(^) = 0, we have coprime integers m, M
and a C°°-diffeomorphism A such that / == h"1, g = h". Therefore, we
have {f,g} = 0.
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Theorems (4.1), (4.2) and Corollary (4.3) are essentially due to the results
of Mather [8, 10] and Sergeraert [20] which say the one dimensional
homology groups of certain groups of diffeomorphisms are zero. When
the foliated S1^!^—) bundle has a locally dense leaf, the problem is
essentially a problem of the two dimensional homology group of Diff^(S1)
(Diff^(R)). Note that, when a 2-torus T2 bounds a 3-manifold W3, the
induced homomorphism H^(T2) -> H^(W3) is never injective. Our
cobordism is obtained from the non-commutativity of 7ti(W3,^-).

In the rest of this section, we consider the case when the commuting
diffeomorphisms / and g belong to a one parameter subgroup generated
by a smooth vectorfield. Then, the foliated bundle may have compact leaves
with non-trivial holonomy and locally dense leaves. Under some special
conditions, we can prove rather easily the fact that {f,g} = 0. The proof of
them gives us the idea of the proof of our main theorem.

LEMMA (4.4). —Let ^ be a C"'-vectorfield (r=l , . . . ,oo) on S1 (resp. on
R with compact support). Let f^ denote the time t map of ^. Let \v be a
non-zero real number. Suppose that there is an element k of Diff^(S1)
(resp. Diff^(R)) such that kf^)k~1 = /^ for any real number s . Then
{/(i)J(^(W)} = 0 in H,(Difr,(S1)) (resp. H^Diff^R))).

Proof. — By Lemma (2.4), we have

^ = U(I)A/(I)^ ^ /(i)^} = {/(i)»/(w)/(i/w)}
= V(l)J(w+(l/w))} •

We give an application of Lemma (4.4). The linear action of SL(2,R) on
2-plane induces an action on the set of rays through the origin, which is an
S1. Consider the vectorfield ^ of S1 which corresponds to the element

( ) of the Lie algebra of SL(2,R). Then the time t map f^

corresponds to ( r Since

(x 0 \/1 t\/x-1 0 \ ^ / 1 x^\
\o x-vVo iA o x ) ~ [0 i r

by Lemma (4.4), we have {fa^f^+a/x2))} = 0. Therefore we have
{/d)J(o} = 0 fo1' anv t ^ 2. For any t , chose ^, ^ ^ 2 such that
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1 = r! - h • Then, by Lemmas (2.2) and (2.3), we have

{/(!)»/(()} = {/(1)J(^)} - {/(1)J((,)} = 0.

Thus we have {f^f^} = 0 for any real number t.

Remark. - Given a vectorfield ^ with singular points and a nonzero
real number w, we can construct a homeomorphism fe fixing the singular
points and satisfying the assymption of Lemma (4.4). However, k is not
smooth in general. In fact, using the normal form of Takens [23], we can
prove the following: Let ^ be a C°°-vectorfield on S1 with singular
points. If there is an positive integer r such that r ^ max
{^'/p(Q =7^(0)} < oo for every singular point p , then k is of class C7,
but not of class C^1 in general.

The proof of the following theorem inspired us the proof of our main
theorem.

THEOREM (4.5). - Let ^ be a C'-vectorfield (r=3,4,.. .,00) on R with
compact support. Let f^ denote the time s map of ̂ . Let t be a real
quadratic irrational number. Then {f^f^} =0 as an element of
H,{Dif^(R)).

Proof. - We may assume that the support of ^ is contained in the
open interval (1/2,1). Let r| be a C°°-vectorfield on R with compact
support such that r}(x) = - x^S/Sx) for xe[0,l]. Let k be the time
one map of T| . Then we have

^(x) = x/(mx + 1) for x e [0,1]
and

^([1/2,1]) = [l/(m+2),l/(m+1)], for m = 0,1, . . . .

For a real number t satisfying |r| < 1, we define a vectorfield ^ on
R with compact support as follows.

. ̂  f° on (-0),0] u[l,oo),
I ky^) on [(l/(m + 2),l/(m +1)] (m = 0,1,...).

Then ^ is of class C7. For, we have

(;(x) = tm(l-mx)2^(x/(l-mx))
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for
xe|:l/(w+2),l/(m+l)].

Differentiating ^, we obtain /o(0 = /o(0).

Let F^) be the time s map of ^. Then ¥^ commutes with f^ for any
5 and u, and we have

kP k~1 — F f•^(l)^ ~ ^(l/O.A-l/o
and

L--IP L — F L-I /- L/v ^ ( i ) ^ — ^(o^ Jd)^'

First we show that {/(D/(()} = 0 if r + r1 eQ. Since

[J(i)'>J(t+(i/t))} = u?

we may assume |r| < 1 changing t and t ~ 1 if necessary. By Lemma
(2.4), we have

{F^F^-^-1^} = 0 ,
that is

{^(1)^(1+(1/0)^ farf^ -lit}} = ^'

By Lemma (2.2), we have

{F(I),F(^(I/O)} + {F(,^-1/^^} + {F^_^_^} + {/(D,/(-I/^ = 0.

By Theorem (4.1), we have

{F(i),fe-7(i^} = 0 and {W(-^A-w} = 0.

By Lemma (2.6) and the assumption that t + t~1 eQ, we have

{^(D-Fd+d/t))} = ^«

Therefore, we have

U(i)J(-i/t)} = ^«

Using {/(i),/(,+(i/o)} = 0, we have

{f(l)J(t)} = — {f(l), f(l/t)} = {/(!),/(-l/t)} = 0.

Let t be a real quadratic irrational number; i.e.,

t = Pi/qi + (Pzlq^^n,
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where ^, p^ ^i? ^2 Bnd n are integers and q^ ^ 0, q^ ^ Q and M ^ 2.
Using the above result for the vectorfield (2^)~1^ and the number
s = (n +1 + 2^/n)/{n -1) which satisfies s + 5 ~1 = 2(n + l)/(n -1) e Q,
we have

[/(1/(2<^))? yi(l/(2^))((n+l+2^n)/(ri--!)))} = 0.

By Lemma (2.6), we have

V(l/(2^))» ./((l/2^))((ri+l)/(n-l)))} = 0;

thus by Lemma (2.2),

{yil/(2^)),/((1^2)(^/n/(n-l)))J>== ^«

By Lemma (2.3), multiplying this by ^p^q^n—V}, we have

{/(!)» ̂ ((p^ )̂] = 0.

On the other hand, by Lemma (2.6), we have

{/(I)? /(pi/^i)} = ^•

Thus, by Lemma (2.2), we have

t/(l)5/(o} = U(l)'/(Pi/9l)} + U(l)»^((P2/92)vA)] = 0.

5. Criterion for the smoothness
of certain homeomorphisms.

In this section, we prove Lemmas (5.1)-(5.3).

Let / be an element of Diff^(R). Then, R - ¥ix<x>(f) is a countable
union of disjoint open intervals; R - Fix°°(/) = u I,. Let ^ denote the
diffeomorphism of R defined by

/JT,=/|T, and /JR - I, = id^.

Then /, 's are of class C°° and f = IT/;..

Conversely, let {I,},gN be a family of disjoint open intervals of R such
that u li is bounded. Let /,(feN) be a C°°-diffeomorphism of R whose
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support is contained in I,. Then / = n^ is a homeomorphism of R,
but / is not necessarily a diffeomorphism of R. For / to be a
diffeomorphism, we need some conditions on the norms of ^ 's.

We introduce some notations which are similar to those used in § 3. For
a function ^ on R, the norms |̂  and ||^||^ are defined as follows :

IH. = sup |̂ (x)| and P||, = ^ m..
xeR i=0

!.!„ and H . l l , , are defined for functions on S1 and intervals in the same
way. We define symbols ^ and ^ as follows. For functions f(q,r) and

(r) *

g(q,r), we mean by f(q,r) ^ g(q,r) that, for every r, there is a constant
(r)

C, such that f(q,r) ^ C,g(q,r) for any ^. We mean by f(q,r) ^ g(q,r)
*

that there is a constant C such that f{q,r) ^ Cg(q,r) for any ^ and r.

For a C-function X on [0,oo), if 7^(^) =7^(0), where 0 denotes the
zero map, we have

(*) sup \^\y)\ ^ x—— sup Î OQI
Q^y^x ( r — l ) \ Q^ys^x

for each i (0 ̂  i ̂  r). Therefore, for any interval [a,b] ( — co <a<b<co)
and for any positive integer n, there is a positive real number C such
that

\f-id\n ^ ||/-^IL ^ C|/-<

for any / G Diff^([^]).

For /eDiff^(R), take the decomposition /=]~]^ . Using the
i

inequality (*) we have the following estimate

(**) ^-id\^^^\f-id\r

for any integers 7, r(0^/^r), where ^ denotes the length of 1^.

Conversely, we have the following lemmas.
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LEMMA (5.1). — Let {Ii},6N ^e a family of disjoint open intervals of R
such that u I, 15 bounded. Let ^-O'eN) be a ̂ -function on R whose support
is contained in I,. Suppose that {\g^} is bounded. Then g = ^ g, is a
C''~!-function. l

Proof. — Let ^ denote the length of I, as before. Using (**), we have

Z ll^llr-1 = Z1 Z 1^- ^ Z1 Z^——— 1^.
' j=0 i j=0 i (r-/) '

Since J^^i is bounded, ^f\~] is bounded (0</'^r-l). Therefore, the
i i

assumption that {|^.|,} is bounded implies that ^||^||,-i < oo, that is, as
m i

m tends to oo, ^ g, converges to g in the ||.||^-i norm. Thus g is of
1=0

class C'"1.

LEMMA (5.2). — Let {Ij be a family of disjoint open intervals of R ,
such that u I, is bounded. Let ^.(I'eN) be a C^diffeomorphism (r^2) of
R whose support is contained in 1^. Suppose that {|/i—^lr},eN is bounded.

Then f = ]~[ /, 15 a Cr~l-diffeomorphism ofR.
i

Proof. - Since / = ^ + EC/;-1^ ^ Lemma (5.1), / is a C-1

map. Since, for each i, inf//(x) > 0 and
x

^-1

\fi-id\^-^^\fi-id\r-^

we have/' ^ infinf/^x) > 0. Thus / is a diffeomorphism of class C'"1
I X

We shall use these lemmas in the following sections in order to
construct some diffeomorphisms. At the end of this section, we give a
lemma which we shall use in § 7.

LEMMA (5.3). - Let 2\ denote the set ofC'-diffeomorphisms of R which
are the identity except on an interval of length 1 . Then, there is a positive
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integer M^ such that,

(1) if /i, /2^ ^ri5^ |y;.-(« l(i=l,2), r^n

1/1/2-^ < M^-id\, + |/,-^
an^

(2) if f, e ̂  (i = 1,.. . ,N) satisfies \f, - id\, ^ (NM,)~1, then

| n / i -^^M,Nmax \f,-id\,.
i = l l^i '^N

Proof. — (1) is a consequence of Faa-di-Bruno's formula and the fact
that \f—id\j ^ \f—id\r (/=(),.. .,r). (2) is immediately obtained from (1).

6. Main theorem.

Our main theorem is as follows.

THEOREM (6.1). — Let {IJ,eN be a family of disjoint open intervals of R
such that u 1̂  is bounded. Let f, g be maps of R onto R satisfying the
following conditions.

(i) /|R - ul, = id^_^ and g\R - u 1, = id^_^.
(ii) For f\l, and g\\^

either (a) there exist coprime integers m^ n^ and a C00-diffeomorphism h^
such that Supp(^) c I,", f}!, = (h,}!^ and g}!, = (^[Vs

or (b) there exist real numbers s^ ^ and a C^-vectorfield ^ on R such
that Supp(^) c: T^., f\\ and g\\ are the time s^ map and the time ^ map
of Syifti, respectively.

Moreover, (c) {max {|w;|, \n^} .\hi—id\y; i(e N) satisfying (a)} and
{max {|s,|, \ti\}. \^\r', i(e N) satisfying (b)} are bounded for any non-negative
integer r .

Then, f, g belong to Diff^(R), fg = gf and {f,g} = 0 in H^Diflf^R)).

Remarks. - 1. That /, ^eDiff^(R) follows from Lemmas (5.1)-(5.3)
(see also (7.6)). It is obvious that / commutes with g .

2. The condition (ii) (c) is satisfied if the sets {(m^.)} and {(.s^.)} are
finite. In particular, if / and g belong to a one parameter subgroup of
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DifT^(R) generated by a C ̂ -vectorfield on R with compact support, then
{f,g} = 0 in H^Diff^R)).

3. For commuting elements /, g of Diff^(Q, we have Theorem (3.1).
The conclusion of Theorem (3.1) is much weaker than the assumption of
Theorem (6.1). However, we do not know whether there exist commuting
diffeomorphisms /, g with compact support for which the vectorfield of
Theorem (3.1) (B) is not of class C°° or the condition (ii) (c) of Theorem
(6.1) does not hold.

We have a corollary to Theorem (6.1).

COROLLARY (6.2). — In any topological equivalence class of transversely
oriented exfoliated (r^2) S1'bundles over T2, there is a C°°-foliated S1-
bundle which is C°°-foliated cobordant to zero.

Proof. — The foliations of foliated S1-bundles over T2 are classified up
to topological equivalence (Moussu-Roussarie [15]). If the foliation of a
foliated S1-bundle over T2 has no compact leaves, in its topological
equivalence class, there is a foliation defined by a smooth non-vanishing
closed 1-form, which is cobordant to zero. If the foliation has a compact
leaf, the foliated bundle is defined by commuting diffeomorphisms of S1

which have fixed points (by changing the fibration if necessary). Then there
is a family {Ij of disjoint open intervals with respect to which these
commuting diffeomorphisms satisfy (2) (A), (B) of Theorem (3.1). Changing
diffeomorphisms h^ and vectorfields ^ if necessary, we obtain a C°°-
foliated S1-bundle over T2 which is topologically equivalent to the original
one and whose total holonomy satisfies (ii) (a), (fc), (c) of Theorem (6.1). By a
result of [12, § 5], the new foliated S^bundle is C°°-foliated cobordant to a
union of foliated S1-bundles over T2 whose total holonomies fix an open
interval of S1 and satisfy (ii) (a), (fc), (c) of Theorem (6.1). Then, by Theorem
(6.1), the 2-cycles corresponding to these foliated S^bundles are
homologous to zero in BDiff^(S1)^. This proves Corollary (6.2).

In the next section, we show that, to prove Theorem (6.1), we only need
the following theorem which is a generalization of a theorem of
Sergeraert [20].

THEOREM (6.3). - Let f be a C^-diffeomorphism of R with compact
support. Then there exists a finite collection [h^. . .,h^} of C00-
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diffeomorphisms such that

Fix°°(^) ^ Fix-Cn (i=l , . . . ,2fc)
and

/= n [^-i^M-
j= i

7. Reduction of the main theorem.

As in the proof of Theorem (4.5), let n be a C-.vectorfield on R with
compact support such that n(x) = - xW for xe[0,l], and let k be

the time one map of TI .
In this section, we prove that Theorem (6.3) implies Theorem (6.1). We

divide the proof into the following three lemmas (Lemmas (7.1), (7.2) and
(73)). Lemma (2.4) plays an important role in the proof of Lemmas (7.1) and

(7.2).

LEMMA (7.1). - // {f,d} satisfies the assumption of Theorem (6.1)t^here
are commuting elements G, H ./ Diff^(R) satisfying [f,g - - {G^
and the following conditions : There are disjoint open intervals J, such that

UJ. is bounded, and for each i, there is a C^diffeomorphism G. such

that Supp (G,) <= J,,
d) either G|J. = ̂ , and H|J. = G,|J. (put m, = 1 in this case), or

G|J. = G.|J, and H|J, = (G,|J,)'"' for some integer m,, and

,) for any non-negative integer r , {(|m,|+l)|G.-^} is bounded.

LEMMA (7 2) - For {G,H} of Lemma (7.1), there are commuting elements
U. V o/Diff^R) satisfying {G,H} = - {U,V} ^ ^/o«owm,

co^^.-T^are^omto^n^r^ K, s»ch tfcat U K. Abounded

-tr^ î-'crT^^^^^
(U|K,)^(V|K.)^ = ^R,.

LEMMA (7.3). - For {U,V} o/^mma(7.2), {U,V} = 0.
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Proof of Lemma (7.1). — Suppose that / and g satisfy the assumption
(i) and (ii) of Theorem (6.1). We may assume that the supports of / and g
are contained in (1/2,1).

We define a diffeomorphism F with compact support as follows. We
have subintervals 1^ 's, and for each i, either a C°°-diffeomorphism h,
and coprime integers m,, n,, or a C^-vectorfield ^ and real numbers 5;,
ti. For each i, we choose a sequence {^j}y6Nu{o} of real numbers a^,
inductively. Put either a^o = m, and a^ = n, or a^o = s^ and a^ == r ^ .
Suppose that we have defined a^ for j ^ p. If a^p = 0 (p ~^ 1), put
^p+i = 0- 1̂  ^i,? ^ 0, we define a ^ p ^ ^ so that

^p+i = - ^,p-i + ^,p^.p
for some integer u^p and |^+J ^ |^^|/2.

In the case when a^o = m, and a^ = n^, put

F , = n ̂ k^.
j=o

In the case when ^ o = s^ and ^ ̂  = ^, put

^= Z (^U^A),
j=o

and let F^ be the time one map of ^. In this case, let h\ denote the time t
map of ^; then we can write

F, = fl Vh^k-^
j=o

Finally put F = pi F^.

By Lemmas (5.1) and (5.2), to show that F is a well-defined C°°-
diffeomorphism, it suffices to show that, for each r, {^h^k'-'-id^ij
and {|(^U^^)|,},,, are bounded.

LEMMA (7.4). - If Supp(fc) c: (1/2,1) and \h-id\, < 1,

^hk-^-id^^ l^i-iV.
(r)
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Proof. - For x e(l/(p+2),l/(p+l)), put

y = x/(l-px)=k~''(x).
Then

(kphk-p)'(x) = (1 +py)2(l +ph(y))-2h/(y).

Put Lp(y) = (l+p^)(l+p/i(j,))-i; then we have

(L,,(.^0-1)(P-1+^0'))= 3^- h(y)
and

/A
2:1 (L.-l^-o^^^+^W^) = (id-hf\y).

\~l/

Since we have

sup |(4-1)00| ^2|/!-f<,
}'e[l/2,l]

if we have sup \(L,-1)^\^ \\h-id\\, for q < r (as the induction
ye [1/2,1] (9)

hypothesis), the above formula together with

inf^-^GO^eri/^i]} ^ 1/2

implies that

sup 1(4-1)^)1 ^ p-^ll,.
ye [1/2,1] (r)

On the other hand, we have, for r ^ 1,

(kphk~p-id)(r\x)

= (d/dx)r-l((L,(y)2-l)hf(y)+(hf(y)-l))

= S I C^,, (^^^((L,^)2-!^^)
o= i n + • • • +r ,=r- l 1 y 1

+ (/I'M-I))^/^'^) .. . (d/dxY^(y).

Since 1/(1 -px) e ((p + 2)/2, p +1), we have

(rf/^)'-^) = r ! p'--' (1 -px)-'--1 < D2'.
(>•)
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Therefore, we have

l^^^-^l^ E KL^)2-!)^^)-^^)-!^
(r) 4=1

^ 1 1 ^ -W'
(r)

^ \h-id\^.
(r)

LEMMA (7.5). - Let ^ be a C^-vectorfield on R such that
Supp (^ c: (1/2,1). TT^n

i(n,K)î  n^'^ia (^eR).(»•)
Proo/: - Since, for x e(l/(p+2), l/(p+l)),

((fcW;))M = a(l-px)^(x/(l^px)^

we have

((^(^)VM = a(2(l-px)(-pWx/(l-px)) + ^(x/(l-px)))
and

((̂ K))"M = ^(2p^(x/(l-px))
- 2p(l -px)-1 ^(x/(l -px))+(l -px)-2^^! -px))).

For r ^ 2 and r ^ q ̂  1, there is a homogeneous polynomial
P^q(z^z^) in z ^ , z^ of degree 2 ( r—l ) , such that

((^K))^) = a i P^^l-p^-^^^Al-px)).
4=1

This proves Lemma (7.5).

LEMMA (7.6). - Under the assumption (ii) (c) of Theorem (6.1) for
h i ' s , w^ have, for any positive real number 8 and for every r ,
max {[m,, |̂ |} |/i;—f^ ^ £ except a finite number of h^s.

Proof. — By (**) of § 5, we have

\h,-id\^ ^\hi-id\,.,,,
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where ^ is the length of I,.. Therefore,

max {|m,|, |n,|} \h,-id\^, max {|m,|, \n,\}\h,-id\^^

Since except finitly many .̂ 's, .̂ 's are sufficiently small, we have proved
Lemma (7.6).

Proof of Lemma (7.1) (continued). - By the definition of a^p, we have

\a^\ ̂  2-^ max [\a^ \a^\] = l-^1 max {\m^ \n,\}.

By Lemma (7.6), except finitely many i ' s , we have

\h,-id\, ̂  (max {|m,|, |^.|}M,)-1 ^ (|aJM,)-1.

By Lemmas (5.3) and (7.4), we have

[k^k^-id^ ̂ Jrt-ie

^ 2-^+ lp2 rmax {|a,ol, Kil}^-<-

Therefore, {^h^ k-1'-id\^ is bounded.

On the other hand, we have

WM^r ^ ̂ P^-^r

^ ^-^i^(r-i) niax{|^,o|, Kil}IU.

This implies that {|(^)^(a^p^.)|,}f^ is bounded.

We have proved that F is of class C00.

For F and k, we have

k¥k-1 = n n ^iJ~lk~j

and
j = i

Put

/c^F^ n n ^J+^-J.
' 7= -1

G = n n ^^-J
i j = i
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and

H = n n fc<i>/-l+all/+l)^.» j = i
Then, by Lemma (2.4), we have

0 = {F^Ffe-^^Ffe}
= {fG^Hgk-^k}
= {/,H} + {/^} + {f^k-^k} + {G,H} + {G,g} + {G^-^}.

By Theorem (4.1), we have

{/,H}=0, {/^-V^O,
{G,g} = 0, {G,^-1/^} = 0.

Therefore, we have

{f,g}= -{G,H}.

Since, by construction, G and H satisfy the conditions (d\ (e) of Lemma
(7.1), we have proved Lemma (7.1).

Proof of Lemma (7.2). — Again, we may assume that the supports of G
and H are contained in (1/2,1). For each f , we have an interval J^
satisfying (d) and (e) of Lemma (7.1). We choose a sequence {^J- of
integers which plays a similar role as the sequence {a^j} used above.

If G|J, = f^j., we put b^ = 0, fc^i = 1 and b^ =0, j ̂  2.

If G|J,=G,|J, and H|J, = (G,|J,r, put b ^ = l , b^ = m,.

In the following definition, if we have b,p = 0, put b^ = 0 for
j ^ p + 1.

If fc i j+i / fcf j is an integer, we define b^j^^, 2 ^ < f ^ 4 (or2^<f^5) as
follows, making b^ 4/^+3 (or fo^+ 5/^+4) an integer.

If 1^+i/^J ^ 2, we define ̂  = 0 , ^ ^ 2.

^ ^ij+i/^ij = ^» ^ e Z and ^ > 0, put

^2 = (l/2)(fc^i -2fc,,) (i.e., ^,,^ =2(^,,+^,^)).
bij^ = - 2^, (i.e., ^^2=(l/2)(^+i4-^,^)),
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and

fc.,,+4 = (l/2)(-fc.,^i +4fc,,,) (i.e., fc,-,^3= -2(fc..,+2+^+4)).

If fcy+i/fc,j =4^, g e Z and qr < 0, put

b,,,+ 2 = (1/2)( - b.,,+1 - 2fc,^) (i.e., fc,,,+1 = - 2(by + fc.,̂ )),
^•+3 = 2fc,,, (i.e., fc.,,+2 = -(l/2)(fc.^i +^,+3)),

and

fc.j+4 = (l/2)(-fc,,,+i +4b^) (i.e., fc,j+3=2(fc.,,+2+^+4)).

If fc,j+i/fc,^. = 44 + 1, ^ e Z and g ^ 1, put

hj+2 = fc,j+i - fc.j (i.e., ^+i=^.+fcy+2),
fc,,,+ 3 = (1/2)( - fc,,^ - fc,̂ .) (i.e., fc,,,̂  = 2(fc,,,^ + fc,,,^)),
^,7+4 = 2fc.,, (i.e., fc,.;+3= -(1/2)(^.+2+^+4))

and

fc,,,+ 5 = (l/2)(fc,,,+1 - fc,,,) (i.e., fc.,,^ = - 2(fc.,,^ + fc,,^ ,)).

If fc,^,/fc,^.= -4q-l, g e Z and q ^ - l , put

^•+2 = - ^ij+i - fc.,; (i.e., fcy+i=-(^.+^.+2)).
fc,,,+3 = (l/2)(-fc,,,+i +^) (i.e., ^,^2= -2(fc.,,^ +fc.,,^)),
^•+4=2fc,,, (i-e.,^+3=(l/2)(fc,,^2+^.^)),

and

fc,,,^ = (l/2)(fc,,,+1 + fc.,,) (i.e., fc^^ = 2b,^ 3 + fc,,,^)).

If fc,^.+i/fc,j = 4 ^ + 2 , q e Z and q ^ 1, put

fc,,,+2 = (l/2)(fc,,,+i -2fc,,,) (i.e., ̂ i =2(fc,,,+fo,,+2)),
fc.,,+3 = - 2fcy (i.e., fc,,,+2=(l/2)(fc,,^i+fc,,^3)),

and

fo,,,+4 = (l/2)(-fc,,,+i+6fo,J (i.e., fc,,,+3= -(^+2+fc,,,+4))-

If ^+i/fc,j = - 4g - 2, ^ e Z and q > 1, put

fc.,,+2 = (l/2)(-fc,,^i -2A.J (i.e., fc,,,^ = -2(^.+fc.^)),
^•,^3 = 2^ (i.e., fc,,^= -(l/2)(fc,,,^ +^,,,+3)),
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and

fc^4 = (l/2)(fc^ +6fc,,) (i.e., ^3=^+^4).
If ^j+i/fru = 4^ + 3, ^ e Z and ^ ^ 0, put

^•j+2 = bij+i - ̂  (i.e, ^+1=^+^+2),
^3 = (1/2)(-^-^) (i.e., ^+2=2(^+^3)),
^•,^4 = 2^,, (i.e., ^3= -(1/2)(^.^+^-+4))

and

^•+5 = (l/2)(fc,^ -3fc,,) (i.e., fc,^4= -(fc,.^3+^^5)).

If bi,j+l/bi,j= - 4 ^ - 3 , ^ e Z and q ^ 0, put

^•j+2 = - ̂ -+1 - fc.j (i.e., fc,^ = - (^+^.,^)),
fc^3 = (l/2)(-fc,^i+fc,,) (i.e., fc,^,= -2(fc,,^+fc,^3)),
^^^ = 2^ (Le. bij^ = (1/2)(^,^2+^^4)),

and

^•^5 = (1/2)(-^.^+3^,,) (i.e., ^^4=^^3+^^5)•

Note that, m each case, we have |̂ .J ^ |^.+i|, for 2 ^ <f ^ 4 (or
2^^5) and |̂ ,, |̂ ^ (l/2)|fc,,,^| (or |̂ , |̂ ^ (l/2)|fc,,,^|). Therefore,
we have

|̂ .| ̂ ^-^max^olj^l}.

Put S = ]~[ n kjGbiJk-j

i J = 0

Then, using Lemmas (7.4) and (7.6) as in the proof of Lemma (7.1), we
see that, for each r, {^G^k-^id^}^ is bounded; consequently, S is of
class C00

Put

u = n n ^G^k-j
i J = l

and
v = n n vG^-^^k-^

i J = l
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Then, by Lemma (2.4),

0 = {S.fcSfe-^^Sfe}
= {GU.VH/c^Gfc}
= {G,V} + {G,H} + {GJ^Gfe} + {U,V} + {U.H} + {U^Gfe}.

As before, by Theorem (4.1), we have

{G,V} = 0, {G.fe^Gfc} = 0, {U,H} = 0
and

{U^G/c} = 0.

Therefore, we have

{G,H}= -{U,V}.

By the choice of {b^,}, for each i and each j ^ 1,

PijbiJ + ( l i , j (b i , j - l^b i , j+2) = 0,

where

{(Pij^ij)} = {(0,1), (1,0), (1,1), (1, -1), (2,1), (2, -1), (1,2), (1, - 2)},

hence we have Lemma (7.2).

Proof of Lemma (7.3). - Let M(p^.)(/=l,.. .,J) denote the set of
suffixes i such that

(V|K^(V|K^- = id^.

Choose a pair of integers Uj, Vj such that Ujpj + vfl^ = 1 for each (p?q).
Define a C^-diffeomorphism W .̂ (/=!,.. .,J) by

W,|R- uK,=f^_,K,,

WIK =^Ki_ _ for ^M(P^•))
Jl i [(U|K,p(V|K,)-^ for ieM(p,,^,).

Then we have

j j
U = f] Wj7 and V = [] W/'7.

j = i j= i
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By Lemma (2.3), we have

{u,v} = n n - ̂ {w,w,}1=1 j = i
By Theorem (6.3), we can write W^(/ = 1,...,J) as a composition of
commutators

w,= ric^-i,^];1=1
so that

Fix^W,) c Fix00^,) (i = 1,.. .,2^,).

Therefore, we have ^W^=W^. provided j ^ ^. Then, by Lemma (2.7),
we have {W,,W^.} = 0 if i ^ j. Since {W,.,WJ == 0, we have proved that
{U,V} = 0.

8. Small commutators of Diff^(R).

This section and the following section are devoted to examining a
method of writing a diffeomorphism of R with compact support as a
composition of commutators.

In this section, we prove the following theorem.

THEOREM (8.1). - Put ^ic(^) = { / eDi f f ° ° ( [0 , l ] ) ;
Supp(/) c: (1/8,7/8), \f-id\^ < c}. Then, for any positive integer w,
there exist a positive integer n and a positive real number c such that every
element f of-2^(n,c} is written as a composition of four commutators',
f= ?1^2] C^sAd ?5^6] [^ALL where each ^O'=l,. . . ,8) belongs to
Din^CO,!]) and satisfies

Supp {h,) c= (0,1) and \h,-id\^ ^ (l/-^)^-^
*

First we give some notations and the outline of the proof of Theorem
(8.1).

Let u be a vectorfield on [0,1] such that Supp (u) c: (0,1) and
u(x) = (8/Qx)^ for xe[l/16, 15/16]. Let A, be the time t map of ^
and A = AI , where we shall fix a real number P depending on / later.
If P is small, but sufficiently large with respect to f - id, Af can be
considered as a small perturbation of A. Since A is a translation by P on
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[1/16, 15/16], using the device of Mather [10], we can construct a
diffeomorphism F(f) of S1 associated with A/. If / is sufficiently near
the identity, F(/) is sufficiently near Y(id). Now, we use the following
theorem of Herman [3] and Sergeraert [19]. Note that, for any rotation p,
we can define a r so that Y(id) = p.

THEOREM (8.2) (Herman [3], Sergeraert [19]). - Let y be a real number
"which satisfies the Diophantine condition, that is, for y there are positive real
numbers C, e, such that \py-{-q\ ^ C/|p|6 for any integers p,q(p^Q). Let
0-^ be the map defined by

0, : Diff?(S1) x S1 -^ Diff?(S1)
(v|/^) ^ R^-'R^,

where R^ denotes the rotation by ^.

Then there exist a neighborhood V of Ry in Diff^°(S1) in C^-topology
and a weak ^-morphism s of class C* ;

s : V -> Diff^(S1) x S1

such that OyS = id^ and s(Ry) = (id ft).

By Theorem (8.2), we can write the diffeomorphism F(f) of S1, which
is close to Ry, in the form R^I/^RyV)/, where v(/ is close to the identity.
Using v(/, we construct diffeomorphisms close to the identity of [0,1], and,
by these, diffeomorphisms we can write / as a composition of four
commutators.

Now we prove Theorem (8.1). The proof is devided into 7 steps.

Step 1. — In this step, we determine a positive integer n and a positive
real number P for our m. First we fix a number y which satisfies the
Diophantine condition and 0 < y < 1. By Theorem (8.2), we have an
inequality

||̂ ((p,(p)|L. ^ (l+||(p||,̂ ||̂ ||o + llcplU,

for any i, where (p is a tangent vector (see [19]). Therefore, if we write
5(<P) = (^((p),^(q>)), we have

||^-^||,^||(p-R,||,^.
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and
|?i| ^||(p-R,||,^

For our m, put n to be m + ^i^. Changing n by a greater integer if
necessary, we may assume that if ||(p-Ry||^ is sufficiently small, (p belongs
to the neighborhood V of Ry. For this n, put a = \f-id\^ and
p = (yi/(m+2) v^g ^g j^g determined \.

Step 2. — In this step, we define the diffeomorphism F(/) of S1. F(/)
will be defined up to the multiplication of rotations to the left.

Let a be a real number such that (7/8) -h P < a < (15/16) - P. If a is
sufficiently small. A/ has no fixed points in [1/8,7/8]. Therefore, for any
x e [1/16, (1/16) +P), there exists a unique integer N and }^e[a,a+P)
such that y = (Af)^{x). Let a^(/) denote this map; y = c^(/)(x).

Define B : [1/16, (1/16) + P)-> S1 by B(x) = (x-(l/16))/P mod 1
and B^: [a,a+P)-^S1 by B^(x)=(x-a)/P mod 1. Then B,c^(/)B-1 is
a well defined C°°-diffeomorphism of S1 (Mather [10]). Put
^a(f) == K^aC/^B"1. Mather proved that, if F^(/) is a rotation, A/ is
conjugate to A ([10]). Note that, for a' e ((7/8)4- P, (15/16)-?),

and
B^(/)B-1 = R^/pB,a,(/)B-1

W) = R(.-^r,(/).

5^p 3. — An estimate on F^(/).

Let N be the minimal integer such that (1/16) + N > (7/8) + P. Put
a == (1/16) + Np. Since Y^(id) = id, T^f) is close to the identity if / is
close to the identity. In fact, we have the following estimate.

Since 13/(16p) < N < 7/(8p), \f-id\, ̂  \f-id\^ = a (r^n), and
p = a1^'^, we have, for sufficiently small a,

\f-id\,<^ (NM,)-1 for r ^ n.

Let /i denote the diffeomorphism of R which coincides with / on [0,1]
and with the identity on R - [0,1], and let T denote the translation of
R by P. Then we have

IT-yT-f^ = |/-< ^ (NM,)-1
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and

su? \^a(f)-^WW\
x e [1/16, (1/16) +p]

sup [((A^N-AT^x)!
x 6 [1/16, (1/16)+p]

^ supKCW-TT^)! = KT/^-T^
X 6 R

= IT^T-N+'/iT^') ... (T-ViT^T-ViT^-TN^
= KT-N.^TN-') ... (T-^T^T-^T)/, -<
< NM,|/-̂ |,
< (7/8)M,(a/p)

Therefore, we have

ir»(/)-< = p'-1 sup K^^-cr^i^^x)!
xe[l/16,(l/16)+p]

< (P^M^P^2^
and

lir<,(/)-id||, < f (y^M^p-^)
r=0

< (7/8)(n+l)M,(a/P2) = (l/^n+^M^'^^^

Step 4. - In this step, we apply Theorem (8.2).

If r,(f) is sufficiently close to the identity, r^p,i_^(/) is sufficiently
close to R^. In fact, we have

l i r»+p<i -„(/) -R,|L < (P/gXn+i)]^'"/*'"^

If a is sufficiently small, by Theorem (8.2) and the choice of n in Step 1, we
can find a number X and a diffeomorphism <)/ of S1 such that

r^p(i-,)(/) = R^^R/I/,
where

1^1 ^ lir^w_,»(/)-R,L ^ a"-/^^'
and

11^-^IL < lir^p(,_,)(/)-^,||, < a^"^'
* *
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Step 5. — In this step, using v|/, we define diffeomorphisms Ho, ^i of
[0,1] (see [10]).

Let n : R -^ R/Z = S1 denote the canonical projection. Let v be a
C^-function on R/Z such that

v(x)e[0,l], xeR/Z,
v(x) == 0 on [3/8,5/8] mod 1

and
v(x) = 1 on [-1/8,1/8] mod 1.

Define a diffeomorphism ko of S1 = R/Z by

ko = n(v.(^id)) + id,

where v)/ - id : R/Z -> R is a lift of v|/ - f^ which is close to zero. Then,
since v|/ is sufficiently^ close to the identity, k^ is a well-defined
diffeomorphism-of S1. Put k^ = ^o1' It is clear that v|/ = ^A:o, /CQ is
the identity on [3/8,5/8] mod 1 and k^ is the identity on
[-1/8,1/8] mod 1.

By the Leibnitz formula, we have

Fo-^IL^ 11^-^IL ^ o^"^* *
and

Fi-^^ll^-^IL^a'"^2'.* *

Let HQ , ^i be" the diffeomorphisms of [0,1] which are defined by

^ ̂  = ^o+f^iRi^fcoRr/iB^^/x), x e [a+(P/2), a+(3/2)p]
l̂  xe[0,l]-[a+(P/2),a+(3/2)P],

^ ^ fB^2pfciB^p(x), xe[a+2p,a+3p]
1 [x xe[0,l] - [a+2p,a+3p].

^o and ^i are well-defined and we have

fo+sp^o) = ^
and

^„+5p(A3^o lA-3^1)=^l/- l.
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The norms of UQ and ^ are estimated as follows.

l^o-^L-P1-^-^
^p1-^-^
^ Ql-m^m/(m+2) ^ ^l/(m+2)

*

In the same way, we have

l̂ i -^L^a1/^2^*

-S^p 6. - In this step, we show that r^g+^p of the composition of /
and some A(, ^±1, ^±1 is the identity.

Since F^^_^(f) = R^-1^^, we have

^ a+p( l -Y)+p( l+X)( / ) = ^ -1RY^.

Since r^+^^o) = i(/, we have

^ a+(2+^-Y)p+3p(A(2+X-Y)p^l^oA-(2+^-Y)p/) = RyV|/.

Therefore, we have

^^(s+^p^^+^^p^iAioA.^+^-Y)?/) = v|/.

^^ ^a+5p(A3p^o lA-3p^l~ l) == v|/~1, we obtain

la+(5+3l)p+3p(^) = l^5
where

^ = ^s+^pAap^o ^-ap^r^.^+^p A(2+^-y)p^i^oA-(2+^-y)p/.

5^p 7. - Completion of the proof.

By a result of Mather [10], there exists a diffeomorphism H of [0,1]
such that Ag = HAH-1 Therefore, we have

/ = [A^^-^^o"1^1]^1^1,^^^]

[A(3+^o lA-(3+,)p,A3p][A- l ,H].

For a diffeomorphism g such that F,^^(g) is a rotation, H is
defined so that

H(x) = (A^A-^(x) for x e [1/8, 15/16],
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where q is a positive integer satisfying A'^x) e [1/16,1/8],

H is the identity on [0, 1/8],
and

H = A, on [15/16,1],
where t is a real number such that F^/^te) - ̂ is/ieW = R(

It is easy to check that H(x) is well-defined and HA = AgH.
In our case, by the definition of g , using the same argument as in

Step 3, we obtain

sup |(H - ̂ )<^(x)| ^ (7/8)M,(a/P).
x 6[1/8.7/8]

On the other hand, H|[(7/8)4-10p,l] coincides with

A,p|[(7/8)+10p,l];

therefore

SUp KH-f^Oc)! ^ Pi? ^ ^^Wm+2)
x6[(7/8)+10p,l] * *

Finally, H|[7/8, (7/8)+10p] is a composition of (A^)11, H restricted to
[1/8,7/8] and A-11 ;

H|[7/8,(7/8)+10p] = ((A^)ll(H|[l/8,7/8])A-ll)|[7/8,(7/8)+10p]

Using the estimates on l^o-^lm. l^i-^L and

sup KH-I^OC)!,
xe [1/8, 7/8]

by Lemma (5.3), we have

sup KH-I^^X)! ^ ^l^^
xe[7/8,(7/8)+10p] *

Consequently, |H-^ ^ ^/^+2)
*

Since

|A,-<^P=al^+2)(|r|^5),*
\Ho-id\^ ^ a1^^), |̂  -id\^ < a1/^2*

* *
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and
\H-id\^ ^ ^/(m+2\

*

we have written / as a composition of four commutators so that the |. |̂ -
norm of every element appearing in the commutators is not greater than
^i/(w+2) ^p ^ ^ constant.

We fix the real number c of the statement of Theorem (8.1) so that c is
small enough for the requirements of Steps 2, 3, 4 and 5. Thus we have
proved Theorem (8.1).

9. Small commutators of Diff^([0,l]).

In this section we prove the following theorem.

THEOREM (9.1). - Put ^(n,c)= {/eDiffS([0,l]); \f-id\,<c]. For any
positive integer m, there exist a positive integer n and a positive real
number c, such that, for any element f of ^(n,c), there are elements g , h
of Diff^([0,l]) such that

(1) f = g h g - l J l - l on [0,1/8],
(2) |̂[5/6,1] = id^, h [ [5/6,1] = i^/6,i], and

(3) \9-id\^^(\f-id\^\ \Jt-id\^ ^ (\f- <)1/3.* *

Sergeraert proved the following proposition ([20]).

PROPOSITION (9.2). - Suppose that, for an element f of Diff^([0,l]),
there exist elements g , h of Diff^^O,!]) such that

(1) f=ghg-lh-l on [0,1/6],
(2) ^|[5/6,1] = f^/6,i], ^[5/6,1] = ^/6,i],
(3) J ? ( h ) = j ^ ( i d ) ,

and
(4) JW =j15(id), jr\9) ^ ^ ' ( i d ) for some m ̂  1.

Then, for any positive real number e, there exist elements g and ~h of
Diff^([0,l]) which are s-\\.\\^-close to g and h, respectively, and satisfy
(1) and (2) of Theorem (9.1).
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By Proposition (9.2), to prove Theorem (9.1), it suffices to show that
there are elements g , h of Diff^O,!]) which satisfy the conditions (1)-(4)
of Proposition (9.2) and admit the estimate (3) of Theorem (9.1).

We obtain such g , h as follows.

Let ^ be a C°°-vectorfield on [0,1] such that ^(x) = ^xm+l{8/8x) on
[0,1/6] and ^ == 0 on [5/6,1], where P is a positive real number. Let
G : R x [0,1] -> R denote the one parameter group of transformations
generated by ^, and let g(x) = G(l,x).

Since the oo-jets at 0 of g ~ 1 and g~lf coincide, by a theorem of
Takens [23], there is a local diffeomorphism h between neighborhoods of
0 such that hg-1^1 = g ~ ^ f annd ? (h) = j^ (id). Thus we have
/ == 9^9~lh~l in a neighborhood of 0. We have a more explicit
definition of h ([20]). Assume that P is sufficiently large with respect to
/. Then we have a function T : [0,1/6] -> R defined by G(r(x),x) = /(x).
Sergeraert [20] showed that r(x) is of class C°° and ^(i) =j?(0). Put

TM= i Tto-VyM);
i=0

then T(x) is a well-defined C00 function of [0,1/6] ([20]). Then our h is
defined by

h-l(x)=G(^(x\x).

Therefore, to prove Theorem (9.1), it suffices to choose M , c and P so
that g and h satisfy the estimate (3) of Theorem (9.1).

Now put n = 3(m+l), a = \f—id\^ and P = a^3. Then we have

\g-id\^^ P^^3.
*

We will estimate the derivatives of T and T and show that

1/ i -^L^a1 /3 .
*

Estimate on T . By the definition of T , if a is sufficiently small, we have

r(x) = - P-^m^CAjc))^ 4- ^~lm~lx~m, xe [0,1/6].
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Put P(x) = - m-^x-"'. Then, for r ^ 0,

^'(x) = P-'ftP^ °/)(x)-P<••>(x))+ P-^PM of)(x)((f'(x)Y-l)

+ P -1 Z E C^,..(P«> o f)(x)f^(x) . . . ^(x).
,=1 r^+•••+ry=r •<

Using \(f-id)w(x)\^((n-i)\)-lx''-i\f-id^ (O^i^n),

(/-^)("(x)=/<•>(x) (i>2)

and

P^x) =(-w)- l(-m)(-w-l) ... (- m-^+l)x-'"-<,

if a is sufficiently small, we have, for 0 < r < n,

K^o/^-p^x)!^ sup IP^^CW-x^+^.LW-xl
t6[0,l]

/ ^ \-m-r-l „

^[x~^f-id\n) ^-^

^^-.-,-.^_^^

KP- °/)(W(xy-i)| ̂  (x-^i/-,.!^ ,̂|/-,.L

< x"-'"--1!/-^
(n,m,r)

and

r-l

E S c.., ^(P^' ° ̂ (x^^x)... /'^(x)
fi= 1 n 4- • • • +r-=r v1' '-^

r-l

(^ ^ S
^^ 4=1 ^+---+rq=r

( Xn \~m~c^ n ~ riV-^f-1^) n—T7i/-<^2(n-r,)!

^^-, ^ n^i/-^
(n,m,r)

r i + - - - + r =rr.^2

^ X
(n,m,r)

.n — m — r — 1 1/-^L
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where the last inequality holds because

- m - q + ^ (n-r,)
^+-.-+^=r,r^2

=^-^_,-1)+^_1)^_[,_ ^ ,^_^

\ \ r,^2 / /

^ n — m — r — 1.

Therefore, we have, for 1 ̂  r ^ m + 1,

IT^MI ^ ^-^"-^"-'-^/-^^a2^2^-'1^'.
(m,n,r)

Estimate on T.

Let / be the C°°-vectorfield of [0,1/6] whose time one map coincides
with ^-1/. Put

^)=(x(x))q-Wx)
and

<pM = (g ~ 'frWg ~ lfy(x) = (log ((g - lf)J(x).
Then we have the following equalities due to Sergeraert ([20], p. 270 and
Lemma (3.6)).

(*) T^(x)0c(^ + \ T^(x) ^ E. , . . . ,a ,
^=1 a i + - - - + ( 9 - l ) o t g _ i = = g - ^

Dc'Mr1.. .[x^'^M]^-1^^)]9-^

= 1 1 T^-1/)^)) Z E^,..,
i ^ 0 ( f = l o i i+ ' - -+(9- l )a^_ i=<- /

[/'((̂ .OW1 • • • ^""(te"1/)'^))]^-'^^"1/)'^))]^^,
for q > 1.

(**) n,(x)+ ^ c^...^_^[^llM]al...[^l,_l(x)p-l
ai+ • • • +(r-l)a,._i=r

= Exffff-1/)'^)) S'^((ff-vyM)^^-1/)'^))]4 E
'^0 ^=0 aj + • • •+( r - l )a^_^=r-9- l

^..^-M^'fyw1... [^-ito"1/)1^))]^-1.
for r ^ 0.

On the other hand, if a == |/-frf|^ is sufficiently small, we have
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|r(x)| < 1/2 and, for xe [0,1/6], i ^ 0, we have

to"1/)1^) = 0(1 Z T^-VYM)-^)
J = 1 J = 0 < G(-f/2,x) = ^(l+l-^m^)-1^.

Here we use the equality G(r,x) = x(l -tftmx"1)'11"1 for

xe [0,1/6], r ^ O .

We note the following inequality

(***) Z (to"1/)1^))' < f xk(l+2- lmpxw0-k/m^ + ̂
1=0 Jo *

x<c(l+2-lmpxm^)~(k/w)+l[oo

+xk

(-(^O+l^-^mx"1) |o

== 2((^/w)-l)P-lm-lxk-w + ̂
for k > m.

The inequalities (*) and (***) imply that an estimate on T^ follows
from those on T00 and 7^ (r<^). On the other hand, the inequalities (**)
and (***) imply that estimates on /(r) and u^ follow from those on ^\^
and (p^(<f<r).

Estimate on (p. — Since

kT1/-^! ̂  l/-^L^i + 1^-^L+i ^ P,
(m) *

we have

Kte'W^)! ^ .—-Ag-'f-id^^ ^ x—p,(m — i)! (m)

for m ^ f ^ 1. Therefore, we have

r+l

l^Wl = Z Z c^,., iog<^ (to-1/)'^))
•(to"1/)')^)...^"1/)')^)

^ ^ P^x^-^
^,=1
^ Px"1-'"1

(r)

for 0 ^ r ^ m - 1.



ON FOLIATED S1-BUNDLES OVER T2 51

Estimates on ^ and ^(r). - For ^(x) = ^(x), we have ([20], 2.11)

00

piW = Z (p^'1/)1^))/^"1^^)).
1 = 0

Since |3c(x)| ^ px^ and |(p(x)| ^ px^, we have, by (***),
* *

l̂ iMl ^ Z P2^-1/)1^))2"
* 1 = 0

^ P2(2p- lw- lxw+x2w) ^ pxm.
(m)

Inductively, if we assume that |^(x)| ^ P^x^ for ^ <r(^m), using (**),
(̂ )

we have

|u,(x)| ^ ^ (PxT^-'ttP^r"1)^-1

(r) ^ + . . . + ( r _ i ) o ( ^ _ ^ = r

+ z (p^/yN)'̂ 1 z1 p^"1/)'^))"-9-1
i?o ,=o

• (l^"1/)'^))'^1)4 I (P )̂'' ... ((Px'"/-1)^-'
« ! + • • •+(r - l )a^_i=r-^- l

^(pxw) r+ f; P'^^-VHx^^^
* . .=0

^ (W.
(m,r)

Therefore, we have

|u,(;c)| ^ yx^ for l ^ r ^ m .
(r)

Since we have ^xm+l ^ /(x),
*

IX^MI ^ prxmr/(px'"+l)'-l = px"1-^1 for 1 < r ̂  m.
*

Estimate on T (continued). — For T(x), we have

T'(x)/(x) = ^ T'^-1/)-^))^^-1/)^^).
i=0
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By the estimate on T and (***),

rr(x)5c(x)| ^ Sa2^^-1/)1^))"---2.?^-1/)1^))-^
(m,n)

= aE((0-Vy(x))'1-1 <£ ap-'jc"-'"-1

*

Therefore, |T(x)[ ^ a173^1 Inductively, if we assume that
(m)

|T^(x)| ^ a1/3^2^ for 1 < t < q(^m+l),
(^,m)

we have, by (*) and (***),

q-i
IT^MteW)4! < y oil'3xm+2-e

(m,<) ̂

^ (px"--1-'1)"' ... (pjc'"-*''-1^1)^^'''4-1)''-20';
a i+ - - -+ ( i | - l ) a^_ i=^ - /

+ Z E a2/3^-1/)'^))2^^'^
>=o i?=i

£ [P^"1/)'^))'"-1^]0-'
a i + - - - +(9-l)a^-i=<?-^

[P^"1/)1^))'1-^-1^1]^-^?^-1/)1^))-^]^^

^ a1^?^'""^2"^^ 4- a273?4 ^ ((^-l/y(x))2w+2+m4

(g) i = o

^ a1^?^'"'^2'^^.
*

By ftxm+l ^/(x) (xe[0,l/6]), we have IT^MI ^ a1^"-'2-9.
* (4,m)

Therefore, we have

|T^(x)| ^ o^3^2-^ for 1 ̂  ^ ^ m + 1.(4,w)

Since |T(x)| < Sa2/3^-1/)1^))2^^) ^ oc1/3^2, the above estimate is
* (m)

also valid for q = 0.

Estimate on h. - Since h-^x) - x == G(T(x),x) - G(0,x), we have

I^M-xl ^ pxw+l|T(x)| ^ a2^2"14-3

* (m)
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if a is sufficiently small. For r ^ 1, we have

(h-^-icD^x) = ̂ oh-^Tf-^+^oh-1-^-^).

Assume that p-i-y^ ^ ^2/3^3-. ^ 0^^<r«m+l)
(w,^) v •' '

Then by the formula

^oh^Tf-^x)
r - l

= ̂  ̂  Z^^ C,,, .^(h -l (x)). (h - ̂ I'M ... (h - T^x). T"'(x).

we have

l^o/l-1.!'/'-11^)! < I.I.^Xm+l-/Oili3X'n+2~^ Q(2/3^2m+3-r
(^»Wl) ^

On the other hand, by the equalities ^(x) = (^-^(xe [0,1/6]),

((^h-^-W-^x) = E1^"1)^)^4-1^^^!-^^),
4=0 \ Q. /

and

(^ o/,-i-y(^) = ^^(^-l(x))((/^-ly(x)^ - ^)(x)
4-1

+ E Z c.l....,^)(^lM)(^lMx)... (/rT^c),
^=1 gi + - - - + q ^ = q

we have

|((^o/z-i-y/^-i)(^[ ^ p-^-^^fpa2^3-^-^
(w,r) ^'

4-^^z z px-^-^ na2^2^3-^
/ ^ - l 9 i + - - - + ^ = 9 ^ y

< P~ lx~w-r+^pof2/3.x;3y»-^.' <?

+ E1 Z p^^x3"3-"""^-^-,^^)-1))
<?=1 9 1 + - - - + ^ = 9 )

^ P - lX -w-r+4(pa2/3X3w+3-^) = a2/3^2m+3-r

Therefore, we have

\(h-1 -idf\x)\ ^ ^3^3-r ^ 0 < r ^ m + 1.
(w,y")
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This implies that

\(h-idf\x)\ ^ a2^2^3-', x e [0,1/6].
(r,w)

We can define h |[1/6,1] so that ^i satisfies (2) of Proposition (9.2) and

\h—id\^ ^ a^3. Take c so small that all the estimates are valid; then we
*

complete the proof of Theorem (9.1).

As a corollary to Theorems (8.1) and (9.1), we obtain the following
theorem.

THEOREM (9.3). — For any positive integer m, there exist a positive
integer n and a positive real number c, such that, for any element f of
D(n,c), there are twelve elements h^ ...,h^ °f ^^(PU]) such that

f= m^-iAj1 = 1
and \h,-id\^ < (Lf-O17'3^2" (/ = 1,. • -.12).

Proof. — For m, we have fly and CQ given by Theorem (8.1). Then,
for no, we take n = 3(no+l) of Theorem (9.1). By Theorem (9.1), if
|/—(rf|n is sufficiently small, we have g o , Tio and g ^ , Ji^ such that

Iff. - ̂  ̂  (I/ - id\n)113, \Ti, - id\^ ^ (|/ - id\^'3

(i=l,2) and
Supp {fQM -1 [01, Jii]-1) c (1/8,7/8).

Since {/[.go^o]'1^!,^^]'1 -id\^ < (\f-idU1'3, we can choose c so
that *

i/Wor' E îr' - <o < co.
Then by Theorem (8.1), there are /i,(i=l,.. .,8) such that

fLgM-'Lg^r1 = Lh,,h,-][,h^-]\_h,,h^hM
and

l/i.-^L ^ mM^LgiW-idU1'^^* u

^dy-'A)1^"1^".
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10. Completion of the proof of the main theorem.

We are now in a position of completing the proof of our main Theorem
(6.1). To this end, as we saw in §7, we need only prove Theorem (6.3).

Proofof Theorem (6.3). - Put R - Fix°°(/) = ul,, where {IJ,eN is a

family of disjoint open intervals. Let ^ denote the length of I,. We may
assume that, for any i, ^ ^ 1. We may also assume that {^},6N ls a

decreasing sequence; ^ ^ ^ provided that i ^ j.

Consider the linear homeomorphism A, which maps [0,1] onto I;.
Then we have, for each i and for any integer n, r (O^n^r) ,

sup KA^cni^ -f^i])^)!= ^-1 sup |(/|l, - f^rMI
O^x^l xel;

^((r-n)!)-1^-1!/-^.

Here we used the inequality (**) of § 5.

For any positive integer w, by Theorem (9.3), we have a positive integer
n^ and a positive real number c^ such that if A^^/II^A^ belongs to
^(n^,cj, then there are twelve elements ^ , i , . . . ,^ , i2 of ^^([A1])
satisfying

A^cni^A— n ̂ ,2,-i^w]
J = l

and

1^-^L ^ cjiAr^/li^-yij1^^^^

Conjugating by A,, we have A,^A,-1 eDiff^(T,) ( f = l , . . .,12),

/|I, = ft [A^-iA^A^A"1]
j'=i

and

supKA^A'1-^)^)! ^ ^"'C.dAr^/lT^-.i^o.ijIn )l/(3(m+2)).
^el, 1 m

Take a sequence {y^}^eN 01^ positive integers such that

r^ ̂  max{n^,3(w+2)(m+l)+l}
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and
(r,-l)/(m+2) ^ ((r,_,-l)/(m+l)) + 1 (m ^ 2).

For each w, there is a positive integer N^ such that, for any i ^ N^,

((^-"m)!)'1^'1!/-^^^ holds.

We take a sequence {N^} of positive integers satisfying the following
conditions.

(1) N, =N1 , N,^N,

and

/^ ^ /^"^^'^^nf—^i ) l/<3 '<wl+2))
w ^ c i^-1"1^"''1^/'-^! ^/o^1))m 1 ' VIJ "'m-l7

holds for any i ^ N^,.

Such a sequence exists because of the inequality

(r, - l)/(m + 2) ^ ((r,_, - l)/(m +!))+! (m ̂  2).

Now we write / as a composition of commutators satisfying the
condition of Theorem (6.3).

For i = 1, .. .,N'i - 1, applying a theorem of Sergeraert [20], we
write f\li as a composition of commutators of Diff^(T^);

/IT— Ft [^-i^w](.-j^DnY^(I,)).
j= i

For each w, for each i = N^, . . . . N^+i - 1, smce N^ ^ N^, we
have

IA^/IIX-- ^0,13^^^,

that is, A^/II^.e^^.cJ. Therefore, using Theorem (9.3) as before,
we have

A^A^eDifTO) (/•=!,.. .42),

/|I, = ft [AA-^-iAr^A^A"1]
j = i
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and

sup |(A,/l,.,A.-l-^(w)(x)| ^ C^-^IA^CnT^A,- ̂ onU1^^
^ C^1-"^-1^'2^!/- y|ji/(3(-2)).

Since ^ < 1, by the choice of r^, we have
l-w+((r^-l)/(3(m+2)))

^1 ^ 1 .

Define a diffeomorphism ^ (/=!,...,12) by

A,|R-uI, = ^R_,i,,
A,|I,=^ for i = l , . . . ,Ni ~ 1,
A,|I, = AA-,A~1 for i ^ N i .

If N^ ^ i ^ N^i.i (w^l) and m' < w, by the choice of N^, we have

supKA^A,-1-^^)!
xel,

^ ((m-m^O-'C-'sup KA^.A.-1-^^")^)!
xel,

^ ((W-W')!)-1^""'^"'"'^"1^""'2^!/-^! J1/(3C"+2))

< c^'^-^'^f^ y/(3<-^^

Therefore, ^sup |(A,/i,,,A,-1 -f^Wx)!; f^N^ is bounded for each w.
Since lx€T. J

^supKA^.A.-1-^^-^^; 1 ̂  « N,-ll
IxeT, J

is of course bounded,

^supKA^.A,-1-^^^)!; ieN} is bounded.
Lxel, J

Therefore, by Lemma (5.2), hj is a C""1 -diffeomorphism. Since m is
arbitrary, ^ is of class C°°.

For i = 1, . . . , NI - 1, let ~h^ (/=!,.. .,2k,) be the diffeomorphism
defined by

^A == ^j and ^jlR -If=^R-i,.

3



58 TAKASHI TSUBOI

By construction, we have

N!"1 k, 6f =n n ?^-1 ,̂2.] n ̂ -M1-1^=1 j= i
and

Fix00^,,) =3 Fix°°(/) ( f= l , . . .,N,-1; 7=1,.. .,2k,),
Fix00^,) ^Fix°°(/) 0=1,... ,12).

We have proved Theorem (6.3).

{Added in proof : The author heard that recently G. H. Davis obtained
independently our Theorem (6.1) in the case of Remark (2). He also proved
a theorem similar to our Theorem (9.3).)
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