We prove that the only rational point of the curve are the cusps.
Consequently, there does not exist any elliptic curve defined over which possesses a rational cyclic subgroup of order .
On démontre que les seuls points rationnels sur de la courbe sont les pointes.
En conséquence, il n’existe pas de courbe elliptique définie sur possédant un sous-groupe cyclique rationnel d’ordre .
@article{AIF_1980__30_2_17_0, author = {Mestre, Jean-Fran\c{c}ois}, title = {Points rationnels de la courbe modulaire $X_0(169)$}, journal = {Annales de l'Institut Fourier}, pages = {17--27}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {2}, year = {1980}, doi = {10.5802/aif.782}, zbl = {0432.14017}, mrnumber = {81h:10036}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.782/} }
TY - JOUR AU - Mestre, Jean-François TI - Points rationnels de la courbe modulaire $X_0(169)$ JO - Annales de l'Institut Fourier PY - 1980 SP - 17 EP - 27 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.782/ DO - 10.5802/aif.782 LA - fr ID - AIF_1980__30_2_17_0 ER -
%0 Journal Article %A Mestre, Jean-François %T Points rationnels de la courbe modulaire $X_0(169)$ %J Annales de l'Institut Fourier %D 1980 %P 17-27 %V 30 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.782/ %R 10.5802/aif.782 %G fr %F AIF_1980__30_2_17_0
Mestre, Jean-François. Points rationnels de la courbe modulaire $X_0(169)$. Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 17-27. doi : 10.5802/aif.782. https://aif.centre-mersenne.org/articles/10.5802/aif.782/
[1] The rational points on the Jacobian of modular curves, Mat. Sbornik, 101 (143) (1976) ; traduction anglaise, Math. U.S.S.R. Sbornik, 30, 4 (1976), 478-500. | Zbl
,[2] Schémas de modules des courbes elliptiques, vol. II of the Proceedings of the International Summer School on modular functions, Antwerp (1972), Lecture Notes in Mathematics 349, Berlin-Heidelberg-New York, Springer, 1973. | Zbl
, ,[3] Die elliptischen Funktionen und ihre Anwendungen, II, Leipzig-Berlin, Teubner, 1922. | JFM
,[4] The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philo. Soc., 85, (1979), 21-23. | MR | Zbl
,[5] Parabolic points and zeta functions of modular forms (Russian), Isv. Acad. Nauk., (1972), 19-66. | Zbl
,[6] Rational isogenies of prime degree, Inventiones Mathematicae, 44 (1978), 129-163. | MR | Zbl
,[7] Rational points on certain elliptic modular curves, Proc. Symp. Pure Math., A.M.S., Providence, 24 (1973), 221-231. | MR | Zbl
,[8] Group schemes of prime order, Ann. Scient. Ec. Norm. Sup., série 4,3 (1970), 1-21. | Numdam | MR | Zbl
, ,Cited by Sources: