Let be a subset of a discrete abelian group whose compact dual is . is exactly -Sidon (respectively, exactly non--Sidon) when holds if and only if (respectively, ). is said to be exactly (respectively, exactly non-) if has the property if and only if (respectively, ).
In this paper, for every and , we display sets which are exactly -Sidon, exactly non--Sidon, exactly and exactly non-.
Soit un sous-ensemble du dual d’un groupe compact . On dit que est exactement -Sidon (resp. exactement non--Sidon) quand si et seulement si (resp. ). On dit que est exactement (resp. exactement non-) quand vérifie toute est telle que, quel que soit ,
si et seulement si (resp. ).
Dans ce travail, pour chaque et , on construit des ensembles qui sont exactement -Sidon, exactement non--Sidon, exactement et exactement non-.
@article{AIF_1979__29_2_79_0,
author = {Blei, Ron C.},
title = {Fractional cartesian products of sets},
journal = {Annales de l'Institut Fourier},
pages = {79--105},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {29},
number = {2},
year = {1979},
doi = {10.5802/aif.744},
zbl = {0381.43003},
mrnumber = {81h:43008},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.744/}
}
TY - JOUR AU - Blei, Ron C. TI - Fractional cartesian products of sets JO - Annales de l'Institut Fourier PY - 1979 SP - 79 EP - 105 VL - 29 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.744/ DO - 10.5802/aif.744 LA - en ID - AIF_1979__29_2_79_0 ER -
Blei, Ron C. Fractional cartesian products of sets. Annales de l'Institut Fourier, Tome 29 (1979) no. 2, pp. 79-105. doi: 10.5802/aif.744
[1] , Multidimensional extensions of the Grothendieck inequality (to appear in Arkiv für Mathematik). | Zbl
[2] , Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier, Grenoble, 20 (1970), 335-402. | Zbl | MR | Numdam
[3] and , Some types of lacunary Fourier series, Colloq. Math., 25 (1972), 117-124. | Zbl | MR
[4] and , p-Sidon sets, J. of Functional Anal., 15 (1974), 404-427. | Zbl | MR
[5] , An example in the theory of lacunary Fourier series, Boll. Unione Mat. Ital., 3 (1970), 375-378. | Zbl | MR
[6] and , On p-Sidon sets, Indiana Univ. Math. J., 24 (1974), 161-167. | Zbl | MR
[7] , On bounded bilinear forms in an infinite number of variables, Quartely J. Math., 1 (1930), 164-174. | JFM
[8] , Ensembles de Sidon et processus gaussiens (preprint). | Zbl
[9] , Trigonometric series with gaps, J. Math. Mechanics, 9 (1960), 203-227. | Zbl | MR
[10] , Fourier Analysis on Groups, Interscience, New York, 1967.
Cité par Sources :



