Radon-Nikodym property for vector-valued integrable functions
Annales de l'Institut Fourier, Volume 28 (1978) no. 3, pp. 203-208.

It is proved that if a Frechet space E has R-N property, then L p (E,ν) also has R-N property, for 1<p<.

On montre que si un espace de Fréchet E a la propriété de Radon-Nikodym, alors L p (E,ν) la possède aussi, pour 1<p<.

@article{AIF_1978__28_3_203_0,
     author = {Khurana, Surjit Singh},
     title = {Radon-Nikodym property for vector-valued integrable functions},
     journal = {Annales de l'Institut Fourier},
     pages = {203--208},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {28},
     number = {3},
     year = {1978},
     doi = {10.5802/aif.709},
     zbl = {0353.46023},
     mrnumber = {80f:46043},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.709/}
}
TY  - JOUR
TI  - Radon-Nikodym property for vector-valued integrable functions
JO  - Annales de l'Institut Fourier
PY  - 1978
DA  - 1978///
SP  - 203
EP  - 208
VL  - 28
IS  - 3
PB  - Imprimerie Louis-Jean
PP  - Gap
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.709/
UR  - https://zbmath.org/?q=an%3A0353.46023
UR  - https://www.ams.org/mathscinet-getitem?mr=80f:46043
UR  - https://doi.org/10.5802/aif.709
DO  - 10.5802/aif.709
LA  - en
ID  - AIF_1978__28_3_203_0
ER  - 
%0 Journal Article
%T Radon-Nikodym property for vector-valued integrable functions
%J Annales de l'Institut Fourier
%D 1978
%P 203-208
%V 28
%N 3
%I Imprimerie Louis-Jean
%C Gap
%U https://doi.org/10.5802/aif.709
%R 10.5802/aif.709
%G en
%F AIF_1978__28_3_203_0
Khurana, Surjit Singh. Radon-Nikodym property for vector-valued integrable functions. Annales de l'Institut Fourier, Volume 28 (1978) no. 3, pp. 203-208. doi : 10.5802/aif.709. https://aif.centre-mersenne.org/articles/10.5802/aif.709/

[1] J. Diestel, J.J. Uhl, Jr., The Radon-Nikodym property for Banach space valued measures, Rocky Mountain J. Math., 6 (1976), 1-46. | Zbl: 0339.46031

[2] L. Drewnowski, Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys., 20 (1972), 269-276, 277-286, 439-445. | Zbl: 0249.28004

[3] E. Saab, Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Soc. Math., 99 (1975), 129-134. | Zbl: 0325.46036

[4] E. Saab, Dentabilité, points extrémaux et propriété de Radon-Nikodym, C.R. Acad. Sci., Paris, 280 (1975), 575-577. | Zbl: 0295.46068

[5] H.H. Schaefer, Topological vector spaces, Macmillan, New York (1971). | MR: 49 #7722 | Zbl: 0217.16002

[6] K. Sundaresan, The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Func. Anal., 24 (1977), 276-279. | MR: 56 #9246 | Zbl: 0341.46019

[7] Ju. B. Tumarkin, On locally convex spaces with basis, Doklady Acad. Sci. USSR, 195 (1970), 1278-1281, English Translation : Soviet Math., 11 (1970), 1672-1675. | Zbl: 0216.40701

[8] P. Turpin, Convexité dans les espaces vectoriels topologiques généraux, Disser. Math., 131 (1976). | MR: 54 #11028 | Zbl: 0331.46001

Cited by Sources: