On montre que si un espace de Fréchet a la propriété de Radon-Nikodym, alors la possède aussi, pour .
It is proved that if a Frechet space has property, then also has property, for .
@article{AIF_1978__28_3_203_0, author = {Khurana, Surjit Singh}, title = {Radon-Nikodym property for vector-valued integrable functions}, journal = {Annales de l'Institut Fourier}, pages = {203--208}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {3}, year = {1978}, doi = {10.5802/aif.709}, zbl = {0353.46023}, mrnumber = {80f:46043}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.709/} }
TY - JOUR AU - Khurana, Surjit Singh TI - Radon-Nikodym property for vector-valued integrable functions JO - Annales de l'Institut Fourier PY - 1978 SP - 203 EP - 208 VL - 28 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.709/ DO - 10.5802/aif.709 LA - en ID - AIF_1978__28_3_203_0 ER -
%0 Journal Article %A Khurana, Surjit Singh %T Radon-Nikodym property for vector-valued integrable functions %J Annales de l'Institut Fourier %D 1978 %P 203-208 %V 28 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.709/ %R 10.5802/aif.709 %G en %F AIF_1978__28_3_203_0
Khurana, Surjit Singh. Radon-Nikodym property for vector-valued integrable functions. Annales de l'Institut Fourier, Tome 28 (1978) no. 3, pp. 203-208. doi : 10.5802/aif.709. https://aif.centre-mersenne.org/articles/10.5802/aif.709/
[1] The Radon-Nikodym property for Banach space valued measures, Rocky Mountain J. Math., 6 (1976), 1-46. | Zbl
, , .,[2] Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys., 20 (1972), 269-276, 277-286, 439-445. | Zbl
,[3] Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Soc. Math., 99 (1975), 129-134. | Zbl
,[4] Dentabilité, points extrémaux et propriété de Radon-Nikodym, C.R. Acad. Sci., Paris, 280 (1975), 575-577. | Zbl
,[5] Topological vector spaces, Macmillan, New York (1971). | MR | Zbl
,[6] The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Func. Anal., 24 (1977), 276-279. | MR | Zbl
,[7] On locally convex spaces with basis, Doklady Acad. Sci. USSR, 195 (1970), 1278-1281, English Translation : Soviet Math., 11 (1970), 1672-1675. | Zbl
,[8] Convexité dans les espaces vectoriels topologiques généraux, Disser. Math., 131 (1976). | MR | Zbl
,Cité par Sources :