It is proved that for any , where is the Poulsen simplex, so that and , are smooth points, there is a rotation of carrying in .
On montre que pour tout , où est le simplexe de Poulsen, et où and , sont des points “smooth” de , il existe une rotation de qui transforme en .
@article{AIF_1978__28_2_233_0, author = {Lusky, Wolfgang}, title = {A note on the paper {{\textquotedblleft}The} {Poulsen} {Simplex{\textquotedblright}} of {Lindenstrauss,} {Olsen} and {Sternfeld}}, journal = {Annales de l'Institut Fourier}, pages = {233--243}, publisher = {Imprimerie Durand}, address = {28 - Luisant}, volume = {28}, number = {2}, year = {1978}, doi = {10.5802/aif.698}, zbl = {0335.46034}, mrnumber = {80b:46019b}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.698/} }
TY - JOUR TI - A note on the paper “The Poulsen Simplex” of Lindenstrauss, Olsen and Sternfeld JO - Annales de l'Institut Fourier PY - 1978 DA - 1978/// SP - 233 EP - 243 VL - 28 IS - 2 PB - Imprimerie Durand PP - 28 - Luisant UR - https://aif.centre-mersenne.org/articles/10.5802/aif.698/ UR - https://zbmath.org/?q=an%3A0335.46034 UR - https://www.ams.org/mathscinet-getitem?mr=80b:46019b UR - https://doi.org/10.5802/aif.698 DO - 10.5802/aif.698 LA - en ID - AIF_1978__28_2_233_0 ER -
Lusky, Wolfgang. A note on the paper “The Poulsen Simplex” of Lindenstrauss, Olsen and Sternfeld. Annales de l'Institut Fourier, Volume 28 (1978) no. 2, pp. 233-243. doi : 10.5802/aif.698. https://aif.centre-mersenne.org/articles/10.5802/aif.698/
[1] Compact, convex sets and boundary integrals, Berlin-Heidelberg-New York, Springer 1971. | Zbl: 0209.42601
,[2] Sandwich theorems and lattice semigroups, J. Functional Analysis, 16 (1974), 1-14. | MR: 49 #10619 | Zbl: 0283.06007
,[3] Banach spaces whose duals are L1-spaces and their representing matrices, Acta Math., 126 (1971), 165-194. | MR: 45 #862 | Zbl: 0209.43201
and ,[4] Extension of compact operators, Men. Amer. Math. Soc., 48 (1964). | MR: 31 #3828 | Zbl: 0141.12001
,[5] The Poulsen simplex, to appear in Anal. Inst. Fourier. | EuDML: 74350 | Numdam | MR: 500918 | Zbl: 0363.46006
, and ,[6] On separable Lindenstrauss spaces, J. Functional Analysis, 26 (1977), 103-120. | MR: 58 #12303 | Zbl: 0358.46016
,[7] The Gurarij spaces are unique, Arch. Math., 27 (1976), 627-635. | MR: 55 #6177 | Zbl: 0338.46023
,[8] A simplex with dense extreme points, Ann. Inst. Fourier (Grenoble), 11 (1961), 83-87. | EuDML: 73782 | Numdam | MR: 23 #A1224 | Zbl: 0104.08402
,[9] Some remarks on the Gurarij space, Studia Math., 41 (1972), 207-210. | EuDML: 217607 | MR: 46 #7860 | Zbl: 0233.46024
,Cited by Sources: