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A NOTE ON THE PAPER
« THE POULSEN SIMPLEX »

OF LINDENSTRAUSS,
OLSEN AND STERNFELD

by Wolfgang LUSKY

It was shown in [5] that there is only one metrizable Poulsen
simplex S (i.e. the extreme points ex S are dense in S)
up to affine homeomorphism. Thus, S is universal in the
following sense : Every metrizable simplex is affinely homeo-
morphic to a closed face of S ([5], [6]).

The Poulsen simplex can be regarded as the opposite
simplex to the class of metrizable Bauer simplices ([5]).
There is a certain analogy in the class of separable Linden-
strauss spaces (i.e. the preduals of Li-spaces) $ the Gurarij
space G is Uniquely determined (up to isometric isomor-
phisms) by the following property: G is separable and for
any finite dimensional Banach spaces E c F , linear isometry
T : E -> G , s > 0 , there is a linear extension T : F —> G of T
with (1 — e)[M| ^ ||T(aO|| ^ (1 + s)lM for all x e F . ([3],
^)- .G is universal: Any separable Lindenstrauss space X is
isometrically isomorphic to a subspace X <= G with a
contractive projection P : G-> X ([9], [6]).

Furthermore G is opposite to the class of separable C(K)-
spaces. There is another interesting property of G :

For any smooth points x , y e G there is a linear isometry T
from G onto G with T(rc) == y . {x e G is smooth point if
\\x\\ = 1 and there is only one x* e G* with

^)= l=||^|).
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In their last remark the authors of [5] point out that here
the analogy between G and A(S) = {f: S -> R | f affine
continuous} seems to break down.

The purpose of this note is to show that under the aspect of
rotation properties there is still some kind of analogy between
G and A(S).

Take SQ e ex S and consider

Ao(S;^)={/"6A(S)|/^o)=0},
for any normed space X let B(X) == {x e X | ]|a;|| < 1} and
&B(X) = {x e X | [|a;|| == 1}. In particular

8B(A(S))+={/-e&B(A(S)) | /^ 0}
We show:

THEOREM.
(a) Let f, g e C)B(A(S))+ so that f, 1 - f, g , 1 - g are

smooth points of A(S). Then there is an isometric isomorphism
T from A(S) onto A(S) with

(i) T(/*) = g
(ii) T(Ao(S; ^o)) = Ao(S; s,) where f(s,) = 0 = g{s,)
(iii) T(l) = 1
(6) Let / 'e?)B(Ao(S;5o))+ and g e bB(Ao(S; s^)) so that

neither g ^ 0 nor g ^ 0 hold. Then there is no isometric
isomorphism T from A(S) onto A(S) with T{f) = g.

(c) TAe elements f e Ao(S; ^o), 50 that f , 1 — /* are smooth
points of A(S), /brm a den^e subset of bB(Ao(S; 5o))+ .

The proof of the Theorem which is based on a method
used in [5] and [7] is a consequence of the following lemmas
and proposition 6. From now on let SQ e ex S be fixed and set
Ao(S) == Ao(S; So). We shall retain a notation of [5] :

By a peaked partition we mean positive elements
n

6?i , . . . , ^ e Ao(S) so that ^ \^ = max |X,| for all
i=l. l^"X,; e R; i ^ n . Notice that this definition just means « peaked

n
partition of unity in A(S) )) ([5]) if we add ^ = 1 — S ^ •
Call a ^-subspace E c Ao(S) ([6]) positively generated
if E is spanned by a peaked partition. If l^+1 ̂  E <= A(S)
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is spanned by the peaked partition of unity {fo, /i, . . . , / „»}
and contains CQ 5 e^ , . .. , e^ then we may arrange the indices
j === 0 ^ 1 , . . . , m so that

C11) ^-^i+Yv^; i=0 , l , . . . , n ;
./==!

m—n

where k^ 0 for all / and ^ A^ < 1 ([6] Lemma 1.3 (i)).

LEMMA 1. — Let E , F <= A()(S) fee /mite dimensional
subspaces so that E is a positively generated l^-space. For any
s > 0 there is a positively generated l^-space E c: Ao(S) so
that E <= fi and int {\\x — y\\ \ y e fi} ^ s||̂ || /or aH ^ e F .

Proof. — We may assume without loss of generality that F
is spanned by positive elements. Let {e^ . . . ,^} be the
peaked partition which spans E . Add CQ as above. By [3]
Theorem 3.1. there is ^ ̂  E <= A(S) with E c: E and
int {\\x — y\\ | y e E} ^ s\\x\\ for all x e F . Hence E is
positively generated by a peaked partition of unity {fo,fi, . . .,/m}
By (*) fj{so} = 0 ; 1 ^ i ^ m . Set fi == linear span
{^•••^}- D

LEMMA 2. — Let l^ ̂  E <= F ̂  ̂  fee positively generated
subspaces of Ao(S). Let 0 e E* fee positive. Then there is a
positive extension 0 e F* of 0 witA ||<D|| = ||3>||.

Proo/*. — Let {e, \ 1 ̂  i ^ n} and {/} | 1 ̂  / ^ m} be
peaked partitions spanning E and F respectively, so that (*)
holds. Define then 0(/f) = O(^) for all i = 1 , . . . , n and
$(^) =0 for all / = n + 1 , . . . , m . D

LEMMA 3. — Let {^ .^6Ao(S) | 1 ̂  i ^ n} be a peaked
partition. Suppose that there is a positive 0 e ex B(Ao(S)*)

n
so that ^ ^(^n) < 1 • Then there is a peaked partition

1=1
{^•,n+i e Ao(S) | 1 < i < n + 1} with

ei,n= ^,n+l + 0(^,J^+i^+i

for all i = 1 , . . . , n .
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Proof. — Let <&o 6 ex B(A(S)*) be an element satisfying
^o{y}'= 0 for all y 6 Ao(S). Consider furthermore

with
0.eexB(A(Sn; i = l , . . . , n ;

°^,J=^ ^' f = i , . . . , n .

Define the affine (^-continuous function f: H ->- R by
/ • ( ± < D ; ) = 0 ; i = 0 , 1 , . . . , n; / • ( ± 0 ) = ± 1 where
H = c o n v ( { ± $.| 1=0,1, . . . , n } U { ± 0}). Set

1 - S 9.2/*(c, »)
^(y^^min, ———'f————-( e. = ± 1; i= l , . . . , n

l- S ^(^.J
1=1

^(y*) = min ̂  - ̂ J - e^ | 0(..,J > 0; . = 1, . . ., nj
( ^^t,^^ )

and consider g(z/*) = min (^ift/*), ^(y*)? 1 + y*(e)) .
Hence g: B(A(S)*)-> R is ^-continuous, concave and

nonnegative. In addition, f{y*) ^ g{y*) holds for all y* e H .
By [3] Theorem 2.1. there is ^+i^+ieA(S) with

^(^^i) ^ g{y*)

for all ^ e B(A(S)*) and y^e^^} = f(y*) for all y* G H .
Hence, ||̂  - [^,n — ^(^.n^+i.n+i]! ^ 1 and

1 1 ^ — ^+i,n+ill < 1- •

Thus 0 ^ e^, — 0 (^ Je.+i, ,+i and 0 ^ e,+i, ̂  for
i == 1 , . . . , n . Furthermore ^o^n+i.n+i) = 0 , hence
^+1^+1^0(8). Thatmeans, e,+i^+i and ^.n — 0(^,J^+i^+i
are the elements of a peaked partition in Ao(S). D

LEMMA 4. — Le^ FI , . . . , r^ > 0 wi(/i S ^ < 1 ^d a
i==l

pea/ced partition {^i^, . . . , e^J c: Ao(S) be gwen. Then there
is a positive element <I> eexB(Ao(S)*) with 0(e, ^) = r,
for all i ^ n .
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Proof. — Let {x^ \ ne N} be dense in Ao(S). Set linear
span {e^J i ^ n} = E . Define OJE by ^(o^J = r, for
all i . Assume that we have defined $ already on a positively
generated Z^-subspace E ^ E of Ao(S) so that ||O|E|| < 1 •
Then there is a basis {^^ | i ^ m} of E consisting of a
peaked partition so that 0(^ ^) > 0 for all i = 1 , . . . , m .

/ ' m \

Now, let 0 < s < l^^1 (1 — S °(^,m) )• There is a positive
\ i==l ' /

linear extension Y e ex B(Ao(S)*) of 0 by Lemma 1 and
Lemma 2. We derive from ex S == S that ex B(Ao(S)*)+ is
w*-dense in B(Ao(S)*)+ . It follows that there is
Q eexB(Ao(S)*)+ with <D(^J^Q(^J for all i = l , . . . , m

m

and with ^ | Q(^ ^) — 0(^ ^)| ^ s . We infer from Lemma 3
i==l

that there is peaked partition

{^+1^(^)1 i = 1, ...,m+ 1}

with ^ = ̂ +1 + Q(^J^+i^+i; i = 1 , . . . , m . Set
E^+i = span {<?, ^^i | i ^ m + 1} and extend 0 linearly by
defining 0(^i,^) - (1 + 2-)-1. Hence ||0,^H < 1 .
Find a positively generated Z^+^-space F <= Ao(S) with
E,+i c: F and inf {\\x, - y\\ \y e F} ^ (m + l)-1!!^^ for all
k ^ m . Continue this process with F instead of E . Finally
we obtain an increasing sequence E^ c Ao(S) of positively
generated ^-spaces so that Ao(S) == UE^ where m runs
through a subsequence of N . Furthermore there are peaked
partitions {^ ^ e E^ | i < m} so that lim 0(^ ^) == 1 . The

m->oc
latter condition implies that 0 is a positive extreme point
of B(Ao(S)*) . D

COROLLARY. — Let e^^e Ao(S) he a peaked partition and let
n

0 < r^; i = 1 , . . . , TZ; be real numbers with ^ r^ < 1 . Then
1=1

there is a peaked partition {cj ^+1 e Ao(S) [ j' = 1, . . ., n + 1}
with e,^ = e^+i + r^+i^+i; i == 1 , . . . , n.

n

Remark. — If we omit « S ^ < 1 » then the above
i==l

corollary is no longer true (see [7], remark after the corollary
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of Lemma 2). The previous corollary does not hold either
if we drop « 0 < r; for all i ». This follows from the next
lemma.

LEMMA 5. — Let SQ e ex S be fixed. Then the set

A(S,^)= = { / l e B ( A o ( S , ^ ) ) l / t

and 1 — f are smooth points of A(S)} is dense in ^)B(Ao(S, 5o))+.

Proof. — Let g e bB(Ao(S, 5o))+ and s^ e ex S so that
g^i) = 1 • Set F = conv ({^o, s-^}) . Let {x^ \ n e N} be
dense in {x e Ao(S, ^o) | \\x\\ ^ 1; x\-p == 0}. Define the affine
continuous function h: F -> R by h{so) = 0 , h{s^) = 1 .

00

Furthermore let f^{s) = 1 — i/2 S 2-"(^(s))2 and
n=l

^) = 1/2 1 2-»(^(.))^
n=i

for all 5 e S . Then /i and /2 are continuous; f^ is concave,
^2 is convex. Farthermore /2(5) < h{s) ^ ^i(^) for all s e F .
Hence there is an affine, continuous extension J i : S -> R
of A with f^s) < ^) ^ ^(5) for all 5 e S ([I], [2]).

Thus R{so) = 0 , ^i) === 1 , 0 < h(s) < 1 for s ^ SQ , 5i .

Then lim ^ ~ ̂  + s^ = g . D
s..o |[(l^e)g+^||

Now, if we take e^^ e A(S,^o) and suppose that there is
0 e exB(Ao(S, So)*) with ^{e^^) = 0 then there must be
^i e ex S with s-^ 7^ So so that ^1,1(^1) == 0 , which is a
contradiction. This concludes our above remark.

PROPOSITION 6. — Let S be the Poulsen simplex and s ,
5 e ex S . Consider x e A(S, s) and y e A(S, 5). Then there is
an isometric (linear and order-) isomorphism T :

Ao(S, s) -> Ao(S, 5) (onto) with T{x) == y .

Proof. — In the following we set X == Ao(S, s) and
Y = Ao(S, 5) . We claim that there are peaked partitions

{^,J i ^ n} c X , {/;,J i ^ n} ^ Y$ M G N ;
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and real numbers a . ^ $ i ^ n$ n e N; with

ei,n == ei, n+1 ~T ^ , nen+l, n+1

W fi,n == fi,n+l 4~ a;, n/n+1 , n+1
n

0 < a,^; i ̂  n; ^ ^n < I'; ^eN;
1=1

^1,1 = ^; A,i = y -
For this purpose we construct peaked partitions

{e^n \i ^ n} ^ X

{f^n | t ^ n} c: Y; n e N$ / ^ n; such that

(2) ^-^4-i+a,^,,^
(2') f^n=n^+a,^^
(3) |[ ̂ —^l ^ 2-^
(3') ||/̂  - ̂ l̂l ^ 2-^.

We proceed by induction :
Let {x^ \ n E N} be dense in X and let {y^ \ n e N} be

dense in Y . Assume that

M%1^^}, { f ^ \ i ^ k }

and 0 < a^j', j = 1 , . . . , n — 1; k ^ p; k , p = 1 , . . . , n;
have been introduced already such that e^\ = x and f[\ = y .
Set E, = Span {^n), | ̂  n} ; F, = Span {/w, | i ^ n}

(*) There are positively generated ^-subspaces E^ <= X
with E^_i <= E/,; /c = n + 1 ? • . • ? ^ ; so that

(4) inf {||^,-^|[1 a; e E,} ^ 2-11 ,̂11; / = l , . . . , n .

Consider a system of peaked partitions {e% | i ^ A*} spanning
Efc and real numbers 0 ^ b^ j, with

k-l
(^\ p(fc-l) __ p(fc) J_ ^ „(/€) . V TL <- 1 .\°y ^i./c-i — ^i,^ ~r ^i, fc-i^/c, fc ? 2j °i,fc-i ^ J L?

l=:l /c == M + 1 ? . . • ? TH .
fc—i

Notice that (6) 0 < S ^, fc-i ^or a11 ^ •
1=1

Since otherwise there is O e e x B ( X * ) with ^>\^-i = 0
and O^^/c) == 1 . As x e E^_i , there are two different s ,
6?i e ex S with a;($) = x{s-^) = 0 , a contradiction.
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We first perturb {e^n \ i ^ n} :
STEP {n + 1) :
Consider

n n
/7\ ^ _ .(n) _ p(n) | y L ./n) — „("+!) I V k^^
^ / ) X — e\^\ — ^i,n ~T 2j •^j^J'.n — ^l.n+l n^ Zj '\r./, "-+-1

j==2 y=2

+(\.n+ 5 ̂ ^Wl1^!
\ J=2 /

where 0 ^ ^ ^ 1 ; 2 ^ / ^ n . Even ^ < 1 holds properly
for all j' = 2 , . . . , n; since otherwise there would be two
different s^ , s^ e ex S with ^i) == ^(^g) == 1$ which can be
infered from (7) similarly as the proof of (6). Using the same
kind of argument shows 0 < kj for all / = 2 , . . . , n .
In view of (6) there is some 6».n ^ 0 .

(a) Let S ^,n < 1 ^
Let io be an index with fc^ ^ 0 . Set /Ci == 1 and

p = min(Yl - S ,̂nV,(n - 1) - 5 ^l-1; 1/nV
\\ l=l / ?0 /

Define

a,,, = 1 - 2-^p ̂  k, &,.„
\ /^<o /

^.n=^n+2-2np/C^; i ^^ .

(fc) Assume now ^ &, ^ == 1 .
From our assumption x e A(S,5) together with (7) it

follows similarly as above that there is i ^ 2 with fc^ > 0 .
Assume without loss of generality that b^ ̂  > 0 .

Let p = min ( i (1 - k^{n - 1) - S1 ^•l-1; l/^) •
\ 2 j=i /

Define

a, ,==&i . + 2-(2ft+l^(l + p)^,
a.;, = fc^, + 2-(2n+l^p^,,; 2 ^ i ^ n - i (if ^ > 2)

, = (l - 2-(2^+l) - 2-(2n+l)p S ^Vn n •
\ J=l /

a,
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Hence in either case 0 < a, ̂  for all i = i , . . . , n and

S ^i,n < 1 • Furthermore
1=1

(8) k., — 6^J ^ 2-^ for all i ^ n .

Define
^ = ̂ i + a,.^1^ i ^ n + 1

(9) ^ = ̂ 1) + ̂ _<^> i ̂  n

^l)=^?l)+al,^ntl).

From (8) and (9) we derive easily K^ — e^ ^2-";
/ c = = l , . . . , n + l ; i ^ n . Hence (2)^i and (3)^i are
established.
Furthermore, because the elements kj of (7) depend only on
^, k ; i ^ ^ ^ ^ — 1; we obtain

n
p(n+l) — p(n+l) 1_ V L/>(n+l)
l̂.l — ^l.n I 2j ^J'.n

J=2

= ̂ i + i ̂ î + (a^ + i /c^.,V^
y=2 \ j=2 /

= <^ + i ^n^ + ffcl.. + i ^^.nWl1^!

- .<-> - xy=2 y=2 /
— ^1,1 — a; •

Now, in STEP (n + 2), repeat the procedure of STEP
(n + 1) but replace E^+i by E^ and n + 1 by M + 2 .
Then turn to STEP (n + 3), ... , STEP (m). We obtain
(2)^..., (2), and (3)^, ^.,(3),.

Consider now F^ . Find positively generated l^ subspaces
F^ <= F^+i <= . . . <= F^ <= Y and peaked partitions spanning
F/c, OT e FJ ̂  /c} with

/•^^/'n^+a,,,^.^; / c=n , . . . ,m- l

where we have set /^ = /*f^; i = 1 , . . . , n . This is possible
by the Corollary after Lemma 4 . Define

fi^k = /% ^A*; M + l ^ / c ^ m ; M + I ^ / ^ W
/'H^ = f^k\ i ^ ^; 1 < A- < n; n + 1 < / ^ m.

Find positively generated ^-subspaces F^ of Y with
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Ffc^i c F^; A* = /n + 1 5 • • • ? r ; such that

(10) inf {||^ ~ x\\\xe F,} ^ 2-̂ 11; / = l , . . . , m .

Repeat (*) with r instead of m and Fr instead of E^ . This
yields (2')^ , . . . , (2'), and (3'),^.. . , (3'),.

Then go back to E^ and find positively generated Z^-sub-
spaces E^+i < = . . . < = E^ of X with E^ <= E^+i and
peaked partitions {e^k \ i ^ k} of E/, with

^Pk = ̂ Pk+i + ̂ ./c^-li.k+i; k = m, ... , r -~ l .

(We have set 6>^ == e%).
Define

^ === ̂ \; i ^ /c; m + i ^ /c ^ r$ m + 1 ^ / < r$
^ === ̂ ; i ̂  /c; 1 < k ^ m; m + 1 ^ / ^ r .

Finally go back to (*) and repeat everything with E^ and F,.
instead of E^ and F^, respectively. By (3) and (3') we obtain

e,^ = lim 6^$ /;,, == lim^; i < M , n e N;
y-x» y->oo

which are elements of peaked partitions with

e i ,n == ei , n+1 ~T ^ , nen+l, n+1 $ /i, n = fi, n+1 1~ ^i, n/n+1 , n+1

^ M; n e N; ^,1 = y; ^.i = o; ((2) and (2')). From (4), (10)

and (3), (3') we infer that

closed span {/^ | i ^ n$ n e N} == Y
and
closed span {e,;^ [ i < n\ n e N} = X .

We define an isometric isomorphism T : Ao(S;^) -> Ao(S$5) by
T(^. ,)==/;.,$ i ̂  n; n e N . D

Proposition 6 establishes the assertion (a) of the Theorem
if we extend T isometrically on A(S) by defining T(l) = 1 .

Proof of (fc) :
Let u, P e ex S so that g(u) > 0 and g(^) < 0 . If

there were an isometric isomorphism (onto) then in view of
Lemma 5 there would be g e &B(Ao(S;5i)) with g{u) > 0
and g(^) < 0 so that g{s) ^ 0 for all s e S; s ^ s^ . But
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then 5i == Xu + (1 — x)^ fw suitable X; 0 < X < 1 . Hence
u = v = Si , a contradiction.

(c) has been proved already by Lemma 5.

Concluding remarks. — The assertion (a) of the Theorem
cannot be extended on any dense subset of ^B(A(S))+ since
otherwise any element of &B(A(S))+ would be extreme point
of B(A(S)) which is certainly not true. This follows from the
fact that for any e e exB(A(S)),

max (\\x +e[\, \\x - e\\) =i + !MI

holds for all x e A(S) . (cf. [4] Theorem 4.7. and 4.8.).
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