On étudie quelques classes d’espaces localement convexes avec quotients séparés et non-complets et en conséquence on obtient des résultats de -complétude. En particulier, l’espace de L. Schwartz n’est pas -complet, où représente un ensemble non-vide de l’espace euclidien .
Certain classes of locally convex space having non complete separated quotients are studied and consequently results about -completeness are obtained. In particular the space of L. Schwartz is not -complete where denotes a non-empty open set of the euclidean space .
@article{AIF_1977__27_4_29_0, author = {Valdivia, Manuel}, title = {The space $D(U)$ is not $B_r$-complete}, journal = {Annales de l'Institut Fourier}, pages = {29--43}, publisher = {Imprimerie Durand}, address = {28 - Luisant}, volume = {27}, number = {4}, year = {1977}, doi = {10.5802/aif.671}, zbl = {0361.46005}, mrnumber = {57 #17182}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.671/} }
TY - JOUR AU - Valdivia, Manuel TI - The space $D(U)$ is not $B_r$-complete JO - Annales de l'Institut Fourier PY - 1977 SP - 29 EP - 43 VL - 27 IS - 4 PB - Imprimerie Durand PP - 28 - Luisant UR - https://aif.centre-mersenne.org/articles/10.5802/aif.671/ DO - 10.5802/aif.671 LA - en ID - AIF_1977__27_4_29_0 ER -
Valdivia, Manuel. The space $D(U)$ is not $B_r$-complete. Annales de l'Institut Fourier, Tome 27 (1977) no. 4, pp. 29-43. doi : 10.5802/aif.671. https://aif.centre-mersenne.org/articles/10.5802/aif.671/
[1] Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). | Zbl
,[2] Topological Vector Spaces I. Berlin-Heidelberg-New York, Springer 1969. | Zbl
,[3] Nuclear locally convex spaces. Berlin-Heidelberg-New York, Springer 1972. | MR | Zbl
,[4] Completeness and open mapping theorem, Bull. Soc. Math. France, 86 (1958), 41-74. | Numdam | MR | Zbl
,[5] On B-complete topological vector groups, Studia Math., 31 (1968), 295-306.
,[6] The space D is not hereditarily complete, Izv. Akad. Nauk SSSR, Ser. Math., 35 (3) (1971), 686-696; Math. USSR Izvestija, 5 (3) (1971), 696-710. | Zbl
,[7] On countable locally convex direct sums, Arch. d. Math., XXVI, 4 (1975), 407-413. | MR | Zbl
,[8] On Br-completeness, Ann. Inst. Fourier, Grenoble 25, 2 (1975), 235-248. | Numdam | MR | Zbl
,[9] Mackey convergence and the closed graph theorem, Arch. d. Math., XXV, 6 (1974), 649-656. | MR | Zbl
,[10] The space of distributions D′(Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. | EuDML | MR | Zbl
,Cité par Sources :