As promised in the first paper of this series (Ann. Inst. Fourier, 26-4 (1976), 115-131), these two articles deal with the asymptotic distribution of the fractional parts of where is an arithmetical function (namely , , ) and is an integer (or a prime order) running over the interval . The results obtained are rather sharp, although one can improve on some of them at the cost of increased technicality. Number-theoretic applications will be given later on.
Comme promis dans l’article no I de même titre (Ann. Inst. Fourier, 26-4 (1976), 115-131), nous étudions ici la répartition asymptotique des parties fractionnaires de où est une fonction arithmétique (à savoir , , ) et un entier (ou un nombre premier) parcourant l’intervalle . On s’est efforcé de démontrer des formes assez fines des théorèmes, encore que certains résultats se prêtent à des améliorations au prix d’une technicité accrue. Des applications arithmétiques seront données plus tard.
@article{AIF_1977__27_2_1_0, author = {Saffari, Bahman and Vaughan, R. C.}, title = {On the fractional parts of $x/n$ and related sequences. {II}}, journal = {Annales de l'Institut Fourier}, pages = {1--30}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {2}, year = {1977}, doi = {10.5802/aif.649}, zbl = {0379.10023}, mrnumber = {58 #554a}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.649/} }
TY - JOUR AU - Saffari, Bahman AU - Vaughan, R. C. TI - On the fractional parts of $x/n$ and related sequences. II JO - Annales de l'Institut Fourier PY - 1977 SP - 1 EP - 30 VL - 27 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.649/ DO - 10.5802/aif.649 LA - en ID - AIF_1977__27_2_1_0 ER -
%0 Journal Article %A Saffari, Bahman %A Vaughan, R. C. %T On the fractional parts of $x/n$ and related sequences. II %J Annales de l'Institut Fourier %D 1977 %P 1-30 %V 27 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.649/ %R 10.5802/aif.649 %G en %F AIF_1977__27_2_1_0
Saffari, Bahman; Vaughan, R. C. On the fractional parts of $x/n$ and related sequences. II. Annales de l'Institut Fourier, Volume 27 (1977) no. 2, pp. 1-30. doi : 10.5802/aif.649. https://aif.centre-mersenne.org/articles/10.5802/aif.649/
[1] On the number of positive integers ≤ x and free of prime factors > y, Ned. Akad. Wet. Proc. Ser. A, 54 (1951), 50-60, Indag. Math., 13 (1951), 50-60. | MR | Zbl
,[2] On the difference between consecutive primes, Inventiones Math., 15 (1972), 164-170. | MR | Zbl
,[3] The distribution of prime numbers, Cambridge Tracts in Mathematics and Mathematical Physics, 30, London, 1932. | MR | Zbl
,[4] Vorlesungen uber Zahlentheorie, zweiter Band, Chelsea Pub. Co., New York, 1969.
,[5] Sur les séries de fonctions orthogonales. Première partie. La convergence, Fundamenta Math., 4 (1923), 82-105. | JFM
,[6] The average size of gaps between primes, Mathematika, 21 (1974), 96-100. | MR | Zbl
,[7] Numbers with small prime factors, and the least k-th power non-residue, Mem. Am. Math. Soc., 106 (1971). | MR | Zbl
,[8] Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann., 87 (1922), 112-138. | JFM
,[9] On the fractional parts of x/n and related sequences. I, Annales de l'Institut Fourier, 26,4 (1976), 115-131. | Numdam | MR | Zbl
and ,[10] On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid., 47 (1943), 87-105. | MR | Zbl
,[11] Weylsche Exponentialsummen in der neuren Zahlentheorie, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963. | Zbl
,Cited by Sources: