In this note, a topological version of the results obtained, in connection with the de Rham reducibility theorem (Comment. Math. Helv., 26 ( 1952), 328–344), by S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) and Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian) is given. Thus a characterization of a class of topological spaces covered by a product space is obtained and the geometric structure of these spaces is clarified. Also, the morphisms of such spaces are characterized and indications regarding the homotopy and homology of the space are given. Finally one applies the obtained results to topological groups and to differentiable foliations. In this last case an alternative treatment of a class of foliations studied by L. Conlon (Trans. Amer. Math. Soc., 194 (1974), 79–102) and a part of a Cheeger-Gromoll-Lichnerowicz theorem (J. of Diff. Geom., 6 (1971), 47–94) are obtained.
Dans cette note, on donne une version topologique des résultats obtenus par S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) et Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian), à l’égard du théorème de décomposition de de Rham. On obtient ainsi la caractérisation d’une classe d’espaces topologiques ayant un espace de revêtement produit et on clarifie la structure géométrique de ces espaces. On caractérise aussi les morphismes de ces espaces et on donne quelques indications sur leur homotopie et homologie. Enfin, les résultats obtenus sont appliqués aux groupes topologiques et aux feuilletages différentiables. Dans ce dernier cas, on obtient une nouvelle manière pour traiter une classe de feuilletages étudiés par L. Conlon (Trans. Amer. Math. Soc., 194 (1974), 79–102) et une part d’un théorème de Cheeger-Gromoll-Lichnerowicz (J. of Diff. Geom., 6 (1971), 47–94).
@article{AIF_1977__27_1_107_0, author = {Vaisman, Izu}, title = {On some spaces which are covered by a product space}, journal = {Annales de l'Institut Fourier}, pages = {107--134}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {1}, year = {1977}, doi = {10.5802/aif.644}, zbl = {0336.55001}, mrnumber = {55 #11259}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.644/} }
TY - JOUR AU - Vaisman, Izu TI - On some spaces which are covered by a product space JO - Annales de l'Institut Fourier PY - 1977 SP - 107 EP - 134 VL - 27 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.644/ DO - 10.5802/aif.644 LA - en ID - AIF_1977__27_1_107_0 ER -
Vaisman, Izu. On some spaces which are covered by a product space. Annales de l'Institut Fourier, Volume 27 (1977) no. 1, pp. 107-134. doi : 10.5802/aif.644. https://aif.centre-mersenne.org/articles/10.5802/aif.644/
[1] Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc., 194 (1974), 79-102. | MR | Zbl
,[2] On non-decomposability into a topological product, Doklady Akad. Nauk S.S.S.R., 49 (1945), 470-471. | Zbl
,[3] Feuilletages ayant la propriété du prolongement des homotopies, Ann. Inst. Fourier Grenoble, 17 (1967), 219-260. | Numdam | MR | Zbl
,[4] Remark on the factorization of spaces, Bull, Acad. Polon. Sci., 3 (1955), 579-581. | MR | Zbl
,[5] On the reducibility of an affinely connected manifold, Tôhoku Math. J., 8 (1956). 13-28. | MR | Zbl
,[6] The decomposition of a differentiable manifold and its applications, Tôhoku Math. J., 11 (1959), 43-53. | MR | Zbl
,[7] The structure of a Riemannian manifold admitting a paralel field of one-dimensional tangent vector subspaces, Tôhoku Math. J., 11 (1959), 327-350. | MR | Zbl
,[8] Foundations of Differential Geometry I, II. Interscience, New York, 1963, 1969. | Zbl
and ,[9] Topology I, II. Academic Press, New York, 1966, 1968. | Zbl
,[10] Variétés kähleriennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. of Diff. Geom., 6 (1971), 47-94. | MR | Zbl
,[11] e-foliations of codimension two (Preprint). | Zbl
,[12] Topology of foliations, Trudy Mosk. Mat. Obšč., 14 (1965), 248-278 (Russian). | MR | Zbl
,[13] A global formulation of the Lie theory of transformation groups, Memoirs Amer. Math. Soc., 22, Providence R.I., 1957. | MR | Zbl
,[14] Sur certaines propriétés topologiques des variétés feuilletées, Act. Sc. et Ind., Hermann, Paris, 1952. | MR | Zbl
,[15] Sur la théorie générale des systèmes dynamiques, Ann. Inst. Fourier Grenoble, 6 (1955) 89-115. | Numdam | MR | Zbl
,[16] Sur la réductibilité d'un espace de Riemann, Comment. Math. Helv., 26 (1952), 328-344. | MR | Zbl
,[17] On reducible Riemannian manifolds in the whole, Izv. Bysh. Učeb. Zaved. Mat. no. 6, (1972), 78-85 (Russian).
,[18] On the bifoliated structure of a reducible Riemannian manifold, Izv. Bysh. Učeb. Zaved. Mat., no. 12 (1972), 102-110 (Russian). | Zbl
,[19] On S-reducible manifolds, Izv. Bysh. Učeb. Zaved. Mat., no. 1 (1973), 110-119 (Russian).
,[20] Static Riemannian spaces in the whole, Izv. Bysh. Učeb. Zaved. Mat., no. 3, (1974), 78-88 (Russian).
,[21] On simple transversal bifibrations, Izv. Bysh. Učeb. Zaved., no. 4 (1974), 104-113 (Russian). | Zbl
and ,[22] Algebraic Topology. Mc Graw-Hill, New York, 1966. | Zbl
,[23] Variétés riemanniennes feuilletées, Czechosl. Math. J., 21 (1971), 46-75. | MR | Zbl
,[24] Decomposition theorems of Riemannian manifolds., Trans. Amer. Math. Soc., 184 (1973), 327-341. | MR | Zbl
,[25] On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311. | MR | Zbl
,Cited by Sources: