Soit une variété riemannienne non compacte à dimensions. Alors il existe un plongement régulier et propre , de dans tel que les fonctions sont harmoniques sur . Il est facile de trouver fonctions harmoniques qui donnent un plongement régulier. Pour obtenir une telle application qui est à la fois propre, c’est plus subtil. On utilise les théorèmes de Lax-Malgrange et Aronszajn-Cordes dans la théorie d’équations elliptiques.
Let be a noncompact Riemannian manifold of dimension . Then there exists a proper embedding of into by harmonic functions on . It is easy to find harmonic functions which give an embedding. However, it is more difficult to achieve properness. The proof depends on the theorems of Lax-Malgrange and Aronszajn-Cordes in the theory of elliptic equations.
@article{AIF_1975__25_1_215_0, author = {Greene, Robert E. and Wu, H.}, title = {Embedding of open riemannian manifolds by harmonic functions}, journal = {Annales de l'Institut Fourier}, pages = {215--235}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {1}, year = {1975}, doi = {10.5802/aif.549}, zbl = {0307.31003}, mrnumber = {52 #3583}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.549/} }
TY - JOUR AU - Greene, Robert E. AU - Wu, H. TI - Embedding of open riemannian manifolds by harmonic functions JO - Annales de l'Institut Fourier PY - 1975 SP - 215 EP - 235 VL - 25 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.549/ DO - 10.5802/aif.549 LA - en ID - AIF_1975__25_1_215_0 ER -
%0 Journal Article %A Greene, Robert E. %A Wu, H. %T Embedding of open riemannian manifolds by harmonic functions %J Annales de l'Institut Fourier %D 1975 %P 215-235 %V 25 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.549/ %R 10.5802/aif.549 %G en %F AIF_1975__25_1_215_0
Greene, Robert E.; Wu, H. Embedding of open riemannian manifolds by harmonic functions. Annales de l'Institut Fourier, Tome 25 (1975) no. 1, pp. 215-235. doi : 10.5802/aif.549. https://aif.centre-mersenne.org/articles/10.5802/aif.549/
[1] A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36 (1957), 235-249. | MR | Zbl
,[2] Analytic mappings of compact Riemann spaces into Euclidean space, Duke Math. J., 3 (1937), 339-354. | JFM | Zbl
,[3] On the triangulation of regular loci, Ann. of Math., 35 (1934), 579-587. | JFM | Zbl
,[4] An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782. | MR | Zbl
,[5] Über die Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen, Math. Phys. K1. IIa, no 11 (1956), 239-258. | MR | Zbl
,[6] Über die Lösungen der linearen partiellen Differentialgleichungen zweiter Ordnung von elliptischen Typus, Math. Ann., 102 (1930), 633-649. | JFM
,[7] On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., 68 (1958), 460-472. | MR | Zbl
,[8] Isometric Embedding of Riemannian and Pseudo-Riemannian Manifolds, Memoir 97, Amer. Math. Soc., 1970. | MR | Zbl
,[9] Integrals of subharmonic functions on manifolds of nonnegative curvature (to appear). | Zbl
, and ,[10] An Introduction to Complex Analysis in Several variables. D. Van Nostrand, Princeton, New Jersey, 1966. | Zbl
,[11] A stability theorem for abstract differential equations and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pur Appl. Math., 9 (1956), 747-766. | MR | Zbl
,[12] Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Annales de l'Institut Fourier, 6 (1955-1956), 271-355. | Numdam | MR | Zbl
,[13] The analytic imbedding of abstract real-analytic manifolds, Ann. of Math., 68 (1958), 159-201. | MR | Zbl
,[14] Elementary Differential Topology, Princeton University Press, Princeton, New Jersey, 1966.
,[15] Analysis on Real and Complex Manifolds, North-Holland, Amsterdam, 1968. | MR | Zbl
,[16] The imbedding problem for Riemannian manifolds, Ann. of Math., 63 (1956), 20-63. | MR | Zbl
,[17] A smooth linear elliptic differential equation without a solution in a sphere, Comm. Pure Appl. Math., 14 (1961), 599-617. | MR | Zbl
,[18] Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), 81-91. | MR | Zbl
,[19] Variétés différentiables, Hermann, Paris, 1955. | Zbl
,[20] The analytic approximation of differentiable mappings, Math. Ann., 139 (1960), 171-179. | MR | Zbl
,[21] Analytic coordinate systems and arcs in a manifold, Ann. of Math., 38 (1937), 809-818. | JFM | Zbl
,[22] Remarks on the first main theorem in equidistribution theory. II, J. Differential Geometry, 2 (1968), 369-384. | MR | Zbl
,[23] Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math., 8 (1955), 473-496. | MR | Zbl
,[24] Partial Differential Equations, Interscience Publishers, New York, 1964.
, , and ,[25] Plongement des variétés analytiques-réelles, Bull. Soc. Math. France, 85 (1957), 101-113. | Numdam | MR | Zbl
,Cité par Sources :