On démontre un théorème facile concernant une condition suffisante pour que la somme de deux sous-espaces fermés d’un espace de Banach soit fermée. Ce théorème conduit à plusieurs résultats du type du théorème de Sarason, qui dit que est une sous-algèbre fermée de . Dans ces résultats, le cercle est remplacé par d’autres groupes, et au lieu du disque unité on considère les polydisques et boules dans les espaces de plusieurs variables complexes. Les sommes des idéaux fermés dans une algèbre de Banach sont aussi étudiés.
A simple theorem is proved which states a sufficient condition for the sum ot two closed subspaces of a Banach space to be closed. This leads to several analogues of Sarason’s theorem which states that is a closed subalgebra of . In these analogues, the unit circle is replaces by other groups, and the unit disc is replaced by polydiscs or by balls in spaces of several complex variables. Sums of closed ideals in Banach algebras are also studied.
@article{AIF_1975__25_1_99_0, author = {Rudin, Walter}, title = {Spaces of type $H^\infty +C$}, journal = {Annales de l'Institut Fourier}, pages = {99--125}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {1}, year = {1975}, doi = {10.5802/aif.545}, zbl = {0295.46080}, mrnumber = {51 #13692}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.545/} }
Rudin, Walter. Spaces of type $H^\infty +C$. Annales de l'Institut Fourier, Tome 25 (1975) no. 1, pp. 99-125. doi : 10.5802/aif.545. https://aif.centre-mersenne.org/articles/10.5802/aif.545/
[1] Boundary kernel functions for domains on complex manifolds, Pacific J. Math., 14 (1960), 1151-1164. | MR | Zbl
,[2] Sur les faces d'une C*-algèbre, Bull. Sci. Math., 93 (1969), 37-62. | MR | Zbl
,[3] Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc., 175 (1973), 37-68. | MR | Zbl
, , and ,[4] An extension of a limit theorem of G. Szegö, J. Math. Anal. Appl., 14 (1966), 499-510. | MR | Zbl
,[5] Les C*-algèbres et leurs Représentations, Gauthier-Villars, Paris, 1969. | MR | Zbl
,[6] Measures whose Poisson integrals are pluriharmonic, Illinois J. Math., 18 (1974), 373-388. | MR | Zbl
,[7] Prediction theory and Fourier series in several variables, Acta Math., 99 (1958), 165-202. | MR | Zbl
and ,[8] Past and future, Math. Scand., 21 (1967), 5-16. | MR | Zbl
and ,[9] Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR Sbornik, 7 (1969), 597-616. (Mat. Sbornik 78 (1969)). | Zbl
,[10] Abstract Harmonic Analysis, Springer Verlag, Berlin ; Vol. 1, 1963 ; Vol. 2, 1970.
and ,[11] Harmonic functions on hermitian hyperbolic space, Trans. Amer. Math. Soc., 135 (1969), 507-516. | MR | Zbl
,[12] Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Normale Superiore Pisa, 25 (1971), 575-648. | Numdam | MR | Zbl
and ,[13] Introduction to the Theory of Bases, Springer Verlag, 1969. | MR | Zbl
,[14] General Theory of Banach Algebras, Van Nostrand, 1960. | MR | Zbl
,[15] The closed ideals in an algebra of analytic functions, Can. J. Math., 9 (1957), 426-434. | MR | Zbl
,[16] Fourier Analysis on Groups, Interscience, 1962. | MR | Zbl
,[17] Function Theory in Polydiscs, Benjamin, 1969. | MR | Zbl
,[18] Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. | MR | Zbl
,[19] Algebras of functions on the unit circle, Bull. Amer, Math. Soc., 79 (1973), 286-299. | MR | Zbl
,[20] Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, 1972. | MR | Zbl
,[21] On the multiplicative Cousin problem with bounded data, Ann. Scuola Normale Superiore Pisa, 27 (1973), 1-17. | Numdam | MR | Zbl
,[22] Bounded approximate units and bounded approximate identities, Proc. Amer. Math. Soc., 41 (1973), 547-550. | MR | Zbl
,[23] Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. | MR | Zbl
,[24] Sur un théorème de M. Fekete, Bull. Acad. Polonaise, (1927), 343-347. | JFM
,[25] Trigonometric Series, 2nd Ed., Cambridge University Press, 1959. | Zbl
,Cité par Sources :