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SPACES OF TYPE H* + C

by Walter RUDIN (*)

Introduction.

The starting point of the present paper is the theorem of Sarason
[18], [8], which states that H” + C is a closed subalgebra of L™ on
the unit circle T.

Here C is the space of all continuous functions on T, and H”
consists of all f€ L™ whose Fourier coefficients f(n) are 0 for all
n < 0. L™ js given the essential supremum norm ; multiplication is
pointwise. Throughout this paper, the word function will mean
complex-valued function.

Sarason’s theorem answered a question raised by Devinatz [4 ;
p. 506] who asked for a characterization of those functions on T
which are in the L™-closure of the space P + H™, where P is the set
of all trigonometric polynomials on T. It is clear that P + H™ is an
algebra (consisting of those f< L™ that have f(n) =0 for all
n < ny, = ny(f). The question thus leads to the Banach algebra
P + H™. Since C = P (Fejér’s theorem), it is clear that

C+H CP+H"CC+ H™

What Sarason did was to prove that C + H™ is closed. The above in-
clusions show then immediately that

C+H =P+ H".

In particular, the perhaps surprising fact that C + H™ is an algebra
on T comes for free !

(*) This research was partially supported by NSF Grant GP-33987X.
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In his recent survey article [19 ; p. 290] Sarason sketches a
simple version of Zalcman’s proof [23] of the above theorem. ([23]
deals with a certain class of infinitely connected regions ; a very
recent paper on this topic is [3]). An examination of that proof shows
that it really uses nothing but the following properties of the Fejér
kernels K, : Convolution with K, carries L™ to C and H” to H™ ;
IIK, * fll, < IIfll, for every fE L ;andllg — K, *gll, > Oasn—>oo,
for every g€ C.

This observation led to the formulation of a theorem concer-
ning sums of subspaces of a Banach space (Theorem 1.2) whose
proof is almost a triviality, and which would not be worth mentio-
ning if it did not have some interesting consequences. It gives a proof
of Sarason’s theorem (Section 1.3) which is even more direct than
the one given in [19] ; no biduals of quotient spaces are needed, and
the F. and M. Riesz theorem is avoided.

More significantly, Theorem 1.2 implies almost immediately that
various natural analogues of H™ + C are closed. This happens, for
instance, when the circle is replaced by other compact abelian groups,
and when the unit disc is replaced by polydiscs or by balls in ", the
space of n complex variables. The question then arises whether these
spaces are algebras.

For groups (Theorem 3.6) and for polydiscs (Theorem 2.2) the
answer turns out to be negative. The algebra feature of Sarason’s theo-
rem thus looks more like an exception than like a rule. It was there-
fore a very pleasant surprise to find that H® + C does turn out to
be an algebra when the underlying function theory is that of the
unit ball in €” (Theorem 2.3). This is probably the most interesting
result of the present paper. (See also Theorem 2.13).

In Part IV, Theorem 1.2 is used to show that sums of certain
closed ideals in Banach algebras are closed, and some examples of
closed ideals are given whose sums are not closed.

1. Sums of subspaces of a Banach space.

1.1. DEFINITION. — If X is a Banach space, 03 (X) denotes the Banach
algebra of all bounded lienar operators A on X, with the usual norm
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IANl = sup {llAx|l : lIxl <1 , x € X}

1.2. THEOREM. — Suppose Y and Z are closed subspaces of a Banach
space X, and suppose that there is a collection ® C @B(X) with the
following properties :

a) Every A € ® maps X into Y.
b) Every A € ® maps Z into Z.
c) sup {lIAll : A € &} < oo,

d) To every y €Y and to every € > 0 corresponds a A € ®
such that lly — Ayll <e.

Then Y + Z is closed.

Proof. — Let x € X be a limit point of Y + Z. Choose €, > 0
so that Ze, < oo. There exist vectors v, € Y + Z such that

Ix —wv,ll = 0

as n > o, Choose a subsequence, again denoted by {v,}, such that

v, —v,_,I<e€, forn=2.Putx, =v,,x,=v, —v,_, forn=2.

n n n—1

Then |ix,|l <e, forn >2and x = Y} x,.
1

Since x, €Y + Z, the exist y, €Y, z, € Z, such that
X, =¥, t z,. By (d) there are operators A, € ¢ such that

ly, — Ayl <e, (m=1). (D
Since A, is linear, x, = y, +Z,, where
;nzyn_Anyn-FAnx 7”=Zn—A”Z". (2

n

Assumption (a) shows that ¥, € Y ; (b) shows that 2, €Z ; if M is
the supremum in (c), then ||A, x|l < M |lx,ll. Thus (1) implies

< +Me, (n=2) 3)
and hence

IZ,l < llx, Il + 1Y, QR+ Me, (n>2) 4
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Since Y and Z are closed, they are complete. Hence y= Z y

3

had 1
is in Y, by (3), and 7 = Z 7,, is in Z, by (4). Therefore x = y +7
isin Y + Z. '

1.3. Proof of Sarason’s theorem. — Let X = L™(T), Y =C(T),
Z = H™(T), and let A, be the operator that assigns to each f € L*(T)
the arithmetic mean of the first n partial sums of its Fourier series.
With @ ={A_,}, assumptions (a) to (d) of Theorem 1.2 hold. In fact,
the supremum in (c) is 1, and (d) is Fejér’s theorem. Thus C(T) + H”(T)
is closed in L™(T).

1.4. Remark. — Scalar multiplication played no role in the proof of
Theorem 1.2. It is therefore to be expected that an analogue of the
theorem holds in (additive) abelian groups G that are complete with
respect to some translation-invariant metric d. To obtain such an
analogue, let A and B be closed subgroups of G, and assume that ®
is an equicontinuous collection of homomorphisms of G into A
which carry B into B, such that to each a € A and each € > 0 corres-
ponds a ¢ € ® with d(a,pa) < €. [To say that ® is equicontinuous
means that to each € > 0 corresponds a § > 0 such that d(px , py) < €
whenever ¢ € ® and d(x, y) < 6].

Conclusion. — A + B is closed in G.

The proof of this is so similar to that of Theorem 1.2 that it
does not seem worthwhile to put the details down, especially since I
know of no interesting applications.

2. H™ + C in several complex variables.

2.1. Background and notation. — For each positive integer n, ¢” is
the vector space of all ordered n-tuples z = (z,,...,z,) of complex
numbers z;, with the usual inner product

<z,w>=z,w +...+z,w, (D

and the corresponding norm |z|| = <z, z>'/?. We put
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B={ze@":|lzl<1} , S={z€¢": |z|| = 1}. 2)

Then B is the open unit ball of ¢”. Its boundary S is a sphere
of (real) dimension 2n — 1 which carries a (unique) rotation-invariant
probability measure o, defined on the Borel subsets of S. The notation
L?(S), for the usual Lebesgue spaces, refers to this measure o.

Note that the dimension n is not mentioned in the notations
B, S, 0. This should cause no confusion.

As in [17], the polydisc U" is the set of all z € ¢" which have
Iz;1 <1 for 1 <i < n ;thus U" is the cartesian product of n copies
of the open unit disc U C ¢. The distinguished boundary of U” is
the torus T", consisting of all z < ¢" with |z} =1 for 1 <i<n.
On T", the expression ‘“almost all” will refer to the Haar measure
of the compact group T".

Lebesgue measure on the euclidean space R* will be denoted
by m,.

H”(B) and H”(U") are the sup-normed Banach algebras of all
bounded holomorphic functions with domains B and U”, respectively.

If f € H°(B) then the radial limits
*@) = lim f(rz) (3)
r—>1

exist for almost all z € S. [The easiest way to see this is to apply the
classical theorem of Fatou to the functions f, € H”(U) that are given
by £, (\) = f(A\z)]. The mapping f = f* is, in fact, an isometric iso-
morphism of H”(B) onto a closed subalgebra of L™(S) which we call
H™(S).

Everything remains correct in the preceding paragraph if B and
S are replaced by U” and T". In addition, H*(T") turns out to be the
class of those h € L(T") whose Fourier coefficients 4(q,,. .. ,q,)
are 0 if oy < O for at least one i.

As regards the boundary behavior of members of H”, all that
we shall need here is the existence of the above-mentioned radial
limits f* a.e. But much more is known ; good references are [25 ;
Chap. 17], [11], [20].

If fis a function with domain B (or U”) and if 0 <r < 1, then
f, is the function with domain S (or T") defined by
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f.(2) = f@rz). 4
Thus f* = lim f,.
r—>1

The following two theorems state the main result of Part Il

2.2. THEOREM. — H™(T") + C(T") is a closed subspace of L™(T") for
all n 2 1, but is an algebra only when n = 1.

2.3. THEOREM. — H™(S) + C(S) is a closed subalgebra of L~(S) for
every n = 1.

2.4. Proof that H* + C is closed. — Each f € L™(T") has its Poisson
integral P [f], an n-harmonic function with domain U” [17 ; Chap. 2]
Using the notation 2.1 (4), for 0 <r < 1, the relevant properties of
P[f] are as follows :

a) P[f], € C(T") for every f € L™(T").

b) P[f], € H*(T") for every f € H”(T").

o) IP[fLI. < lIfll. for every f € L*(T").

d) 11_1311 Ilf = P[f]ll. = O for every f € C(T").

(See [17 ; p. 18)). With X = L™(T"), Y = C(T"), Z = H*(T"), and
A, f=P|[f],, the hypotheses of Theorem 1.2 are thus satisfied. This
proves one half of Theorem 2.2.

To show that H® + C is closed on S, replace T” and U” in the
preceding paragraph by S and B. The Poisson integral is now defined
by means of the classical Poisson kernel for the ball (the one that is
associated with Newtonian potential theory) ; we could also use the
Poisson-Szegd kernel ; see [11] or [20 ; p. 24]. In either case, pro-
perties (a) to (d) hold, and the proof is completed as above.

Observe that the technique of this proof can be applied to any
bounded region £ C ¢" which is star-shaped with respect to the
origin and whose boundary 02 is sufficiently well-behaved that the
Dirichlet problem with continuous data on 9S2 can be solved in 2.

2.5. Proof that H*(T") + C(T") is not an algebra when n > 1. — Pick
an F € H”(U) which is not in the disc algebra A, i.e., which does not
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have a continuous extension to U. Then F* does not coincide a.e.
with any continuous function on T.

Fix n > 1, défine f € H™(U") by

fGiy,...,z,) =F(z,) (1)
and define ¢ € L™(T") by

0@ =Z,f*2) =7,F* (). (2)
It suffices to show that ¢ & H”(T") + C(T").

So assume, to get a contradiction, that ¢ = g + h* for some
g € C(T), h € H*(U"). Since z,z, =1 on T", it then follows from
(2) that

F*(z,) = z,8(2) + z,h* (2) (3)
for almost all z € T". Since # € H*(U"),

1 o . .
—f ez, ... ,rz,_,,re®)dd =0 4)
27 —n

if 0<r<1 and (z,,...,2,_,) €ET"7L Letting r = 1 in (4), it
follows from (3) that

* 1 "io i6
F*@) = 3 L g, . 2, , &% ao ()

a.e. on T"~!. The continuity of g shows that the right side of (5)
is a continuous function of (z,,...,z,_,). Thus F* coincides a.e.
on T with a continuous function. This contradicts our choice of F.

The proof of Theorem 2.2 is now complete.

The proof of Theorem 2.3 (i.e., the proof that H* + C is an
algebra on S) requires further preparation. It will be completed in
Section 2.11.

2.6. LEMMA. — Assume n > 1. If ¢ is a nonnegative measurable func-
tion on ¢ = R?, if z € S, and if

F)=9(<,2>) €@ (n
then

— 1
[Fao="=— [ o0 - NP\ dm,00. @

m
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(Proposition 7.2 of [6] contains a more general version of this
lemma).

Proof. — It is obviously enough to prove (2) under the assump-
tion that ¢ (hence also F) is continuous. Choose coordinates in ¢”
(by means of a unitary transformation) so that z = (1,0,...,0)
Then F(§) = ¢(§,). Define

1) = j:B Fdm,, (0<r< o). 3)
There are two ways to rewrite I(r). By means of polar coordinates,
I(r) = 2nV,, _/;rtz"“ dt ‘/S‘F(tf) do (%), (4)
where V,, is the volume of the unit ball in R?". Hence
I'(1) = 2nV,, j; F do. (5
On the other hand, Fubini’s theorem gives
1) = Vanoy [y o0 02 = NEY' L dm, 0, (6)
since F(§) = ¢({,). Hence
') =20 - 1) V,,_, fu o) (1 — INPY' ™2 dm, (V). (7)

Now (2) follows from (5) and (7), since nV,, = nV,,_,. [This
last relation can be obtained from (6) by putting »r = 1 and ¢ = 1].

2.7. TOEPLITZ OPERATORS ON S. — We recall that the Cauchy kernel
for B is

C(Z,i’)=(1 (D

- <Z ) §>)n
and that the Cauchy integral C[f]of a function f € L'(S) is defined by
ClI@=[, Cc,HF© do®) (EB). )

If f € H*(B), then the Cauchy formula
f@=C[f*1(z) (z€B) (3)
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holds. See [1], [9], [11], [20], [21]. Frequently, C(z, {) is called the
Szegb kernel of B.

We associate to each ¢ € L™(S) the Toeplitz operator T, by the
formula

va= C [ef]. 4)
Thus T,p carries each f € L'(S) to a holomorphic function in B.

[It would be more in keeping with the terminology that is custo-
mary when n =1 to use the symbol T f for the boundary values of
C [¢f]. However this would require a preliminary discussion of their
existence. For our present purpose, this is not needed, and therefore
the definition (4) seems preferable].

2.8. DEFINITION. — If ¢ € C(8), its modulus of continuity w, is defi-
ned for 0 < ¢ < 2 by

w, (1) = sup {lp(z) — () : llz = §ll <1}, n
If
2 dt
f0 W, ()= < o0 ®))
then ¢ is said to satisfy Dini’s condition.

2.9. LEMMA — For any nonnegative measurable function w on [0, 2]
the integrals

a= [ Wit -z Cz, DI do @) (1)
S
and

B(r) = j; w(l§ —zI) ICz , §) — Clrz, HIdo(S) (2)

are independent of z (for z € S, 0 <r < 1).

If w=w » for some ¢ € C(S) that satisfies Dini’s condition, then
a<ooagndfB(r) > 0asr > 1.

Proof. — We begin with the (more interesting) case n > 1.
Note that [I¥ — z|I*> = 2 Re (1 — <z, £>) if ||zl = [I§]l = 1. By
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2.7 (1) the integrands in (1) and (2) are thus functions of <z, {>.
It follows from Lemma 2.6 that

-1

fU GO\ dm,(\) 3)

and

m 1

n—1 1 — Ayn
B ==—— G(x)l - (=) ldmzox) @)
where

G =< I :)\|n =D - neye,

(5)

This shows the asserted independence. If w = w, then w is non-
decreasing ; since 1 — A? < 2|1 — Al in U, it follows that

G <2"?|1 = N™? w /2T = AD. (6)

The integral of G over U is not larger than the integral of the right
side of (6) over the half disc D with center at A = 1 and radius 2
that covers U. Write A =1 —se® (0<s< 2, 18] <7/2) and then
replace 2s by #?, to obtain

f w&/2TT =X
D

:
N dma () = m [ @) = 7

Thus a < o if w w,, and 2.8 (2) holds.
Next, put vy = (1 — N/(1 —=rN), for N[ <1, 0<r< 1. Then
[T — 9l =(1 -/l — r\] < 1. Hence |y| < 2, and
H=9"1=10 -9l +y+. ...+ <2" -1, (8)

a bound that is independent of r and A. Since o < o© means that
G € L'(U), Lebesgue’s dominated convergence theorem can be applied
to the integral in (4) ; it shows that 3(r) > Oasr - 1.

When n = 1, S is the unit circle, and the substitution ¢ = 2 sin |0/2|

gives ) d
2 t t
a== [ w(t) < oo 9)
w Yo

Vi-2 t

if w= W, (Note that w,, is bounded). That §(r) > 0 as r > 1
follows as above.
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We now come to the principal step in the proof that H” + C
is an algebra on S.

2.10. — LEMMA. — If ¢ € C(S) satisfies Dini’s condition and f € H™(S)
then T, f € H(B) and there is a g € C(S) such that
of =g+ (T,N* ae. (o] (1
Proof. — Apply Lemma 2.9, with w = w,,. Since a < oo, the inte-
gral
g@) =~ [ [¢®) — 9] Cz,§) do(§) )

exists (as a Lebesgue integral) for every z € S, and defines a bounded
function g on S.

Since f € H™(S), the Cauchy formula extends f to a bounded
holomorphic function in B, which we still denote by f. Explicitly,

firz) = fs Cez, ) f§) do(}) 3

forze S, 0<r<1. Also

(T, ) = [ Cz, §) o) F6) do ®). (4)
Comparison of these three integrals shows that
(T,f) (rz) — f(rz) p(z) + g(2)
= [ 6@ —e@1 [COz . §) — Clz , DIFE) do(). (5)
Define B(r) as in Lemma 2.9, with w = w,, and use the notation
2.1 (4). Then (5) implies

(T, N, —fietegl@<BMIfl. CES0<r<I). (6)

Note that (T,f), and f,¢ are continuous functions on S. Since B(r) > O
as r > 1 (Lemma 2.9), their difference converges, uniformly on S,
to — g. Thus g € C(S). Since f is bounded in B, (6) implies that "[pf is
bounded, hence that T,f € H*(B). Thus (T,f), = (T,/)* and f, - f,
a.e.on S, asr > 1, so that (1) follows from (6).
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2.11. — Proof of theorem 2.3. — Choose f &€ H™(S) and g € C(S).
There exist infinitely differentiable functions ¢; on S which converge
uniformly to g. By Lemma 2.10, each ¢,f € H” + C. Since

o f — gfll, > 0

as i > oo and since H” + C is closed (Section 3.4) it follows that
gf € H® + C. Thus H”(S) + C(S) is closed under the formation of
products, ie., it is an algebra.

2.12. — Remarks. — The Dini condition cannot be dropped from the
hypotheses of Lemma 2.10 since T,(1) = C[y] is unbounded in B
for some ¢ € C(S).

Some results similar to Lemma 2.10 already exist in the lite-
rature. Henkin [9 ; Theorem 1.2] shows that if f is in the ball algebra
(continuous on B, holomorphic in B) and if ¢ satisfies a Lipschitz
condition (of order 1) on S, then T,f is in the ball algebra. Stout
[21 ; Lemma 2] shows that the real part of T, (f*) is bounded in B
if f is a holomorphic function in B whose real part is bounded and
if ¢ is real and satisfies a Lipschitz condition on S.

Actually, both Henkin and Stout formulate and prove these
results not just for the ball, but for strictly pseudo-convex regions
with Ca-boundary (Henkin) and for certain convex regions with
Cz-boundary (Stout).

Kordnyi and Vigi [12 ; p. 627] prove, for 1 < p < oo, that C[f]
lies in the Hardy space H? (B) if £ € LP(S). It follows that the Toeplitz
operators T, map L?(S) into H?(B), for 1 <p <o and for every
¢ € L7(S).

To conclude Part II, here is another version of Theorem 2.3.

2.13. THEOREM. — If C,(B) denotes the class of all uniformly conti-
nuous functions with domain B, then H”(B) + C,(B) is a Banach
algebra, relative to the supremum norm.

Proof. — Let X be the sup-normed Banach algebra of all bounded
continuous functions on B, put Y =C,(B), Z = H*(B). Then Y
consists of exactly those members of X that extend continuously to
the closed ball B. Hence Y and Z are closed subalgebras of X. To
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apply Theorem 1.2, define (A, f) (z) = f(rz), forf€X,z€ B, 0<r<L.
These operators A, have the properties (a) to (d) needed in Theorem. 1.2
Hence Y + Zisclosed in X.

As in Section 2.11, it is now sufficient to show that of € H™(B) +
C,(B) if f€ H”(B) and if ¢ is very smooth (say, infinitely differen-
tiable) on B. In that case, Lemma 2.10 implies that the function

F=Clef*1=T,(f") (N

is in H°(B). Forz € S, 0 < r < 1, let us write

W —-F)@z)=a@,z)+b(r,2) (2)

where
a(r, z) =y(2) f@rz) — F(rz), 3)
b(r,z)=[prz) —p@)] f(rz). 4)

As r = 1, the proof of Lemma 2.10 shows that a (r, z) > g(z)
uniformly on S ; since ¢ is uniformly continuous and f is bounded,
b(r,z) > 0 uniformly on S. Thus (¢f — F), = g, uniformly on S.
Hence ¢f — F € C,(B), and the proof is complete.

3. H” + C on groups.

3.1. Beginning with Helson and Lowdenslager [7], “analytic” func
tions have been studied on compact abelian groups G whose duals
I' are ordered groups. By definition, functions on G are ‘‘analytic”
in this setting if their Fourier coefficients are 0 on the negative half
of I'. (Chapter 8 of [16] is devoted to this topic). In particular, H*(G)
makes sense in those situations, and it is natural to ask to what extent
the analogue of Sarason’s theorem holds. This is answered by Theorem
3.6. But we shall first see that Theorem 1.2 can also be applied on
noncommutative groups.

3.2. DEFINITIONS. — Let G be a locally compact group, not necessa-
rily abelian, with identity element e, and with a left Haar measure
m : for every Borel set E C G and for every x € G, m(xE) = m(E).
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The notation L?(G) refers to the usual Lebesgue spaces, with respect
to m. In particular, L”(G) is the Banach space of all bounded Borel
functions on G, modulo those that are locally null, and L™(G) is
the dual space of L'(G) ; see [10 ; p. 141, p. 148].

Each function f with domain G has right transiates R, f and
left translates L f defined by

(RN x) =fxa) , (L) x) =flax) (x€G,a€G). (1)
A set ¥ of functions on G is left-invariant if L f€ Z for all fE€E X
and a € G. To define right-invariant, replace L, by R,.

The symbol C,,(G) denotes the class of all bounded functions f
on G that are right uniformly continuous : to every € > 0 should
correspond a neighborhood V of e in G such that |f(y) — f(x)| < €
whenever y € Vx. It is easily seen that C,, (G) is a closed subalgebra
of L™(G), and that C,,(G) is right invariant.

The convolution f * g of two Borel functions f and g with domain
G is defined by

o @=[ fmeor0dy = [ rengody @

whenever the integrals are finite if the integrands are replaced by their
absolute values ; note that we write dy fordm (y).

3.3. THEOREM. — If G is a locally compact group and if H is a left-
invariant weak*-closed subspace of L™(G), then

H+C,,(G) (1)

is a norm-closed subspace of L™(G).

The weak*-topology of L™(G) is of course the one that L™(G)
has by virtue of being the dual space of L'(G). Note the (1) is the
sum of a left-invariant space and a right-invariant one. This left-right
theme will occur again in Part 1V,

Proof. — Put X =L7"(G), Y =C,,(G), Z = H, and apply Theo-
rem 1.2, with ® the collection of all operators A, given by
Af=o*f 2
where ¢ € L'(G), ¢ = 0, j(; ¢ dm = 1.
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We have to verify properties (a) to (d) of Theorem 1.2.
Since L' * L™ C C,, [10 ; p. 295], (a) holds.
To prove (b), let Z' be the space of all g € L'(G) such that

[ fgdm =0 3)
G

for every f&€ Z. Since Z is weak*-closed, it follows that f€ Z if
and only if (3) holds for every g € Z*. Since Z is left-invariant,

f; fx'y)gy)dy =0 4

if f€ Z, g <Z' x € G. Multiply (4) by ¢(x), where ¢ € L' (G), inte-
grate with respect to dx, and use Fubini’s theorem. The result is

L @exnoemdy=o0 )
for every g € Z'. Thus ¢ * f € Z, and (b) holds.

Since |l * fll. < llgll, IIfIl., ||A¢I| = 1 for every A‘p € &. Hence
(c) holds.

Finally, take f€ Y = C_, (G), pick € > 0, and let V be a .neighbor-
hood of e in G such that |f(y) — f(x)| < € whenever yx~! € V. Take ¢
so that ¢ = 0 outside V. Then

17G) = A, NN =1 [ () 1) = fr )

S sup If(x) — f(r 'x)<e
yEV

since x (y~'x)~! = y. Thus (d) holds, and the proof is complete.

Example 3.5 below is an obvious application of Theorem 3.3.
But let us first look at one that is not quite so obvious, even when
G =R.

3.4. THeorREM. — If G is a locally compact group, if a € G, and if
P,(G) is the class of all g € L™(G) that satisfy the periodicity relation

R,z =8, (1
then C_ (G) + P,(G) is a closed subspace of L™(G).
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Although C,,(G) and P,(G) are closed subalgebras of L™(G),
their sum is not an algebra, except in the trivial case a = e.

Proof. — It is clear that P,(G) is a subalgebra of L*(G), and
that P,(G) is left-invariant ; to see the latter, note that R,L, = L, R,
for every b € G. To apply Theorem 3.3, we have to show that P, (G)
is weak*-closed in L™(G).

The equality (1) means that g(xa) = g(x) except possibly in
some set that is locally null. Thus a function g € L”(G) belongs to
P,(G) if and only if

[ @-Rgfam=0 )
G
for every f € L'(G). Put b = a~'. The relation

f R fdm=2®) [ gR,fdm (3)
G G

follows almost directly from the definition of the modular function
A of G [10 ; pp. 195-6]. Thus (2) is equivalent to

fG [f —A®) R,flgdm = 0.

We conclude that g € P,(G) if and only if j(; hg dm = 0 for every

h of the form h =f — A(b) R,f, as f ranges over L'(G). Hence
P,(G) is weak*-closed.

Theorem 3.3 implies now that C,,(G) + P,(G) is (norm-)
closed.

Next, suppose a # e. Choose a function ¢ € P,(G) which is
discontinuous at e (more precisely, which does not coincide a.e.
with any function that is continuous at e). Choose f € C,_(G) so
that f(e) = 1, f(a) = 0. Assume

of=g+h &)

for some g € P,(G), » € C,,(G). Since f(a) = 0 and ¢ is bounded,
¢f is continuous at a. Hence g is continuous at a. Since g € P,(G),
g is also continuous at e. But ¢f is not continuous at e. Hence (5)
is impossible, ¢f & C,,(G) + P,(G), and the proof is complete.






