Estimates of growth at infinity of norms are given for trigonometric sums whose fixed frequencies are close to integers (the norms are computed on intervals moving to infinity with a fixed length). For , this problem was solved by Paley and Wiener.
On estime la croissance à l’infini, en norme , des sommes trigonométriques dont les fréquences (fixes) sont proches d’entiers (la norme est calculée sur un intervalle de longueur fixe dont le centre tend vers l’infini).
@article{AIF_1974__24_4_189_0, author = {Meyer, Yves}, title = {Th\'eorie $L^p$ des sommes trigonom\'etriques ap\'eriodiques}, journal = {Annales de l'Institut Fourier}, pages = {189--211}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {4}, year = {1974}, doi = {10.5802/aif.538}, zbl = {0287.42003}, mrnumber = {51 #8716}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.538/} }
TY - JOUR AU - Meyer, Yves TI - Théorie $L^p$ des sommes trigonométriques apériodiques JO - Annales de l'Institut Fourier PY - 1974 SP - 189 EP - 211 VL - 24 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.538/ DO - 10.5802/aif.538 LA - fr ID - AIF_1974__24_4_189_0 ER -
Meyer, Yves. Théorie $L^p$ des sommes trigonométriques apériodiques. Annales de l'Institut Fourier, Volume 24 (1974) no. 4, pp. 189-211. doi : 10.5802/aif.538. https://aif.centre-mersenne.org/articles/10.5802/aif.538/