Adhérence faible étoile d'algèbres de fractions rationnelles
Annales de l'Institut Fourier, Tome 24 (1974) no. 4, pp. 93-120.

Étant donnés un compact K du plan complexe, et une mesure non nulle sur K, on étudie H (μ), l’adhérence dans L (μ), pour la topologie σ(L (μ),L 1 (μ)), de l’algèbre des fractions rationnelles d’une variable complexe, à pôles hors de K. Le résultat principal obtenu est qu’il existe un sous-ensemble E μ de K, éventuellement vide, mesurable pour la mesure de Lebesgue plane, et une mesure μ s , éventuellement nulle, absolument continue par rapport à la mesure μ, tels que : H (μ) soit isométriquement isomorphe à H (λ E μ )L (μ s ), où λ E μ désigne la restriction à E μ de la mesure de Lebesgue plane.

Let K be a compact subset of the complex plane, and μ a measure on K; we study H (μ), the weak star closure in L (μ), of the algebra of rational functions with poles off K. The main result is the following: there exists a subset E μ of K, possibly empty, measurable with respect to the Lebesgue measure, and a measure μ s , possibly equal to zero, absolutely continuous with respect to the measure μ, such that: H (μ) is isometrically isomorphic to H (λ E μ )L (μ s ), with λ E μ the restriction to E μ of the Lebesgue measure.

@article{AIF_1974__24_4_93_0,
     author = {Chaumat, Jacques},
     title = {Adh\'erence faible \'etoile d'alg\`ebres de fractions rationnelles},
     journal = {Annales de l'Institut Fourier},
     pages = {93--120},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     number = {4},
     year = {1974},
     doi = {10.5802/aif.533},
     zbl = {0287.46065},
     mrnumber = {53 #14141},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.533/}
}
TY  - JOUR
AU  - Chaumat, Jacques
TI  - Adhérence faible étoile d'algèbres de fractions rationnelles
JO  - Annales de l'Institut Fourier
PY  - 1974
SP  - 93
EP  - 120
VL  - 24
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.533/
DO  - 10.5802/aif.533
LA  - fr
ID  - AIF_1974__24_4_93_0
ER  - 
%0 Journal Article
%A Chaumat, Jacques
%T Adhérence faible étoile d'algèbres de fractions rationnelles
%J Annales de l'Institut Fourier
%D 1974
%P 93-120
%V 24
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.533/
%R 10.5802/aif.533
%G fr
%F AIF_1974__24_4_93_0
Chaumat, Jacques. Adhérence faible étoile d'algèbres de fractions rationnelles. Annales de l'Institut Fourier, Tome 24 (1974) no. 4, pp. 93-120. doi : 10.5802/aif.533. https://aif.centre-mersenne.org/articles/10.5802/aif.533/

[B1] A. Browder, Point derivations on function algebras, J. Functional Analysis, 1 (1967), 22-27. | MR | Zbl

[B2] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183. | MR | Zbl

[D1] A. M. Davie, Bounded Limits of analytic functions, Proc. Amer. Math. Soc., 32 (1972), 127-133. | MR | Zbl

[D2] A. M. Davie, Bounded Approximation and Dinchlet Sets, J. Functionnal Analysis, 6 (1970), 460-467. | MR | Zbl

[D3] N. Dunford and J. Schwartz, Linear operator. Part. I : General theory. Interscience, New York, 1958. | Zbl

[G1] T. W. Gamelin, Uniform algebras. Prentice Hall Series in Modern Analysis, 1969. | Zbl

[G2] T. W. Gamelin and J. Garnett, Bounded approximation by rational functions (à paraître).

[G3] T. W. Gamelin and J. Garnett, Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis, 8 (1971), 360-404. | MR | Zbl

[G4] J. Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, 297, Springer-Verlag. | MR | Zbl

[L] G. M. Leibowitz, Lectures on Complex Functions Algebras. Scott Foresman and Co (1970), 64-67. | MR | Zbl

[S1] D. Sarason, Weak star density of polynomials, J. Reine Angew. Math., 252 (1972), 1-15. | MR | Zbl

[S2] D. Sarason, A remark on the weak star topology of l∞, Studia Math., 30 (1968), 355-359. | MR | Zbl

Cité par Sources :