Étude des ensembles exceptionnels et des classes de fonctions différentiables. Majoration des intégrales exponentielles.
We obtain three theorems about transformation of sets of multiplicity onto Kronecker sets, by means of functions of various differentiability classes. The same method yields an improved theorem on the union of two Kronecker sets.
@article{AIF_1973__23_4_65_0, author = {Kaufman, Robert}, title = {Topics on {Kronecker} sets}, journal = {Annales de l'Institut Fourier}, pages = {65--74}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {23}, number = {4}, year = {1973}, doi = {10.5802/aif.482}, zbl = {0262.43011}, mrnumber = {49 #5733}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.482/} }
Kaufman, Robert. Topics on Kronecker sets. Annales de l'Institut Fourier, Tome 23 (1973) no. 4, pp. 65-74. doi : 10.5802/aif.482. https://aif.centre-mersenne.org/articles/10.5802/aif.482/
[1] SÃ(c)ries de Fourier Absolument Convergentes, Ergebnisse Math. Bd. 50, Springer-Verlag, Berlin, 1970. | MR | Zbl
,[2] An introduction to harmonic analysis, Wiley, New York, 1968. | MR | Zbl
,[3] A functional method for linear sets, Israel J. Math., 5, (1967), 185-187. | MR | Zbl
,[4] Sets of multiplicity and differentiable functions, Proc. A.M.S., 32, (1972), 472-476. | MR | Zbl
,[5] Some results on Kronecker, Dirichlet, and Helson sets, Annales Inst. Fourier (Grenoble), 20, (1970), 219-324. | Numdam | MR | Zbl
,[6] Real and Complex Analysis, Mc Graw-Hill, New York, 1966. | MR | Zbl
,[7] Trigonometrical Series, I. Cambridge, 1959 and 1968.
,Cité par Sources :