On signatures associated with ramified coverings and embedding problems
Annales de l'Institut Fourier, Volume 23 (1973) no. 2, pp. 229-235.

Given a cohomology class ξH 2 (M;Z) there is a smooth submanifold KM Poincaré dual to ξ. A special class of such embeddings is characterized by topological properties which hold for nonsingular algebraic hypersurfaces in CP n . This note summarizes some results on the question: how does the divisibility of ξ restrict the dual submanifolds K in this class ? A formula for signatures associated with a d-fold ramified cover of M branched along K is given and a proof is included in case d=2.

Étant donné une classe de cohomologie ξH 2 (M;Z), il existe une sous-variété KM duale à ξ dans le sens de Poincaré. Il existe un ensemble de tels plongements qui est caractérisé par des propriétés topologiques, que les hypersurfaces algébriques de CP n vérifient. Cet exposé résume quelques résultats sur la question : comment la divisibilité de ξ limite-t-elle les sous-variétés duales, K, dans cet ensemble ? Et nous donnons une formule pour la signature associée à un revêtement d’ordre d sur M, ramifiée sur K ; nous le démontrons dans le cas où d=2.

@article{AIF_1973__23_2_229_0,
     author = {Wood, J. and Thomas, Emery},
     title = {On signatures associated with ramified coverings and embedding problems},
     journal = {Annales de l'Institut Fourier},
     pages = {229--235},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {23},
     number = {2},
     year = {1973},
     doi = {10.5802/aif.470},
     zbl = {0262.57012},
     mrnumber = {49 #3964},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.470/}
}
TY  - JOUR
TI  - On signatures associated with ramified coverings and embedding problems
JO  - Annales de l'Institut Fourier
PY  - 1973
DA  - 1973///
SP  - 229
EP  - 235
VL  - 23
IS  - 2
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.470/
UR  - https://zbmath.org/?q=an%3A0262.57012
UR  - https://www.ams.org/mathscinet-getitem?mr=49 #3964
UR  - https://doi.org/10.5802/aif.470
DO  - 10.5802/aif.470
LA  - en
ID  - AIF_1973__23_2_229_0
ER  - 
%0 Journal Article
%T On signatures associated with ramified coverings and embedding problems
%J Annales de l'Institut Fourier
%D 1973
%P 229-235
%V 23
%N 2
%I Imprimerie Durand
%C 28 - Luisant
%U https://doi.org/10.5802/aif.470
%R 10.5802/aif.470
%G en
%F AIF_1973__23_2_229_0
Wood, J.; Thomas, Emery. On signatures associated with ramified coverings and embedding problems. Annales de l'Institut Fourier, Volume 23 (1973) no. 2, pp. 229-235. doi : 10.5802/aif.470. https://aif.centre-mersenne.org/articles/10.5802/aif.470/

[1] M. Atiyah and I. Singer, The index of elliptic operators: III, Annals of Math. 87 (1968), 546-604. | MR: 38 #5245 | Zbl: 0164.24301

[2] F. Hirzebruch, Topological methods in algebraic geometry, 3rd ed., New York, 1966. | MR: 34 #2573 | Zbl: 0138.42001

[3] F. Hirzebruch, The signature of ramified coverings, Papers in honor of Kodiara, 253-265, Princeton, 1969. | MR: 41 #2707 | Zbl: 0208.51802

[4] W. Hsiang and R. Szczarba, On embedding surfaces in 4-manifolds, Proc. Symp. Pure Math. XXII. | Zbl: 0234.57009

[5] K. Jänich and E. Ossa, On the signature of an involution, Topology 8 (1969), 27-30. | MR: 38 #6613 | Zbl: 0184.27302

[6] P. Jupp, Classification of certain 6-manifolds, (to appear). | Zbl: 0249.57005

[7] M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in codimension two, I, (to appear). | Zbl: 0238.57018

[8] M. Kervaire and J. Milnor, On 2-spheres in 4-manifolds, P.N.A.S. 47 (1961) 1651-1657. | MR: 24 #A2968 | Zbl: 0107.40303

[9] W. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143-156. | MR: 40 #3570 | Zbl: 0198.56701

[10] V. Rokhlin, Two dimensional submanifolds of four dimensional manifolds, Functional Analysis and its Applications, 5 (1971), 39-48. | MR: 45 #7733 | Zbl: 0268.57019

[11] C.T.C. Wall, Classification problems in differential topology. V. On certain 6-manifolds, Invent. Math. 2 (1966), 355-374. | Zbl: 0149.20601

[12] E. Thomas and J. Wood, On manifolds representing homology classes in codimension 2, (to appear). | Zbl: 0283.57018

Cited by Sources: