Let be a smooth Riemannian manifold of finite volume, its Laplace (-Beltrami) operator. Canonical direct-sum decompositions of certain subspaces of the Wiener and Royden algebras of are found, and for biharmonic functions (those for which ) the decompositions are related to the values of the functions and their Laplacians on appropriate ideal boundaries.
Soit une variété riemannienne de volume fini, l’opérateur laplacien sur . Pour certains sous-espaces des algèbres de Wiener et Royden sur , on construit une décomposition canonique liée à l’opérateur itéré . Si est une solution de l’équation biharmonique , les valeurs de et à la frontière idéale déterminent les composantes de suivant la décomposition.
@article{AIF_1971__21_3_217_0,
author = {Kwon, Y. K. and Sario, Leo and Walsh, Bertram},
title = {Behavior of biharmonic functions on {Wiener's} and {Royden's} compactifications},
journal = {Annales de l'Institut Fourier},
pages = {217--226},
year = {1971},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {21},
number = {3},
doi = {10.5802/aif.387},
zbl = {0208.13703},
mrnumber = {49 #5385},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.387/}
}
TY - JOUR AU - Kwon, Y. K. AU - Sario, Leo AU - Walsh, Bertram TI - Behavior of biharmonic functions on Wiener's and Royden's compactifications JO - Annales de l'Institut Fourier PY - 1971 SP - 217 EP - 226 VL - 21 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.387/ DO - 10.5802/aif.387 LA - en ID - AIF_1971__21_3_217_0 ER -
%0 Journal Article %A Kwon, Y. K. %A Sario, Leo %A Walsh, Bertram %T Behavior of biharmonic functions on Wiener's and Royden's compactifications %J Annales de l'Institut Fourier %D 1971 %P 217-226 %V 21 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.387/ %R 10.5802/aif.387 %G en %F AIF_1971__21_3_217_0
Kwon, Y. K.; Sario, Leo; Walsh, Bertram. Behavior of biharmonic functions on Wiener's and Royden's compactifications. Annales de l'Institut Fourier, Volume 21 (1971) no. 3, pp. 217-226. doi: 10.5802/aif.387
[1] and , Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, (1953), 432 p. | Zbl | MR
[2] and , Ideale Ränder Riemannscher Flächen, Springer, (1963), 244 p. | Zbl
[3] , Partial differential equations, Wiley, New York, (1964), 672 p. | Zbl | MR
[4] and , Biharmonic classification of Riemannian manifolds, (to appear). | Zbl
[5] and , Quasiharmonic classification of Riemannian manifolds, (to appear). | Zbl
[6] , Variétés différentiables, Hermann, Paris, (1960), 196 p. | Zbl
[7] — , Classification theory of Riemann surfaces, Springer, (1970), 446 p. | Zbl | MR
[8] — — , The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134. | Zbl | MR
[9] , New methods for solving elliptic equations, North-Holland, Amsterdam, (1967), 358 p. | Zbl | MR
Cited by Sources:



